吴恩达老师机器学习课程chapter05——评估模型

本文是非计算机专业新手的自学笔记,高手勿喷。

本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第十章、第十一章。



在运用一个训练集训练完一个假设之后,如何评估假设效果如何?

如果发现该假设的效果并不好,如何决定下一步的工作?


评估模型方法

训练集(training set)与测试集(test set)

在回归问题与分类问题中的评估方法:

训练集、交叉验证集(cross validation set / cv)与测试集

通常,我们不能在一开始就决定用什么样的模型,可以加入交叉验证集。

首先,利用训练集训练完不同模型;

之后,利用交叉验证集计算每个模型的\(J_{cv}(\theta^{i})\);

最后,选择\(J_{cv}\)最小的那组作为最终假设模型。


高偏差(bias)与高方差(variance)

基本概念

由图可见,模型的阶数越高,对训练集的拟合效果越好,但是对训练集之外的其他样本则未必,会出现两种情况:

  • 阶数过低,欠拟合,高偏差
  • 阶数过高,过拟合,高方差

正则化的影响

由图可见,合适的模型下,正则化强度越小,模型更可能过拟合;正则化强度越大,模型更可能欠拟合



可以通过 λ=0.1、λ=0.2、λ=0.4、λ=0.8、λ=1.6、λ=3.2、λ=6.4……这样的方法选择合适的λ。

学习曲线(learning curve)

在高偏差与高方差情况下的学习曲线:

神经网络的过拟合


查准率(pecision)与召回率(recall)

查准率 (P)$=\frac{TP}{TP+FP} $ 所有判P的样本当中多少是TP

召回率 (R)$=\frac{TP}{TP+FN} $ 所有真P的样本当中多少是TP

查准率、召回率与阈值之间的关系:

一般来说,阈值(threshold)设为0.5,也就是说\(h_θ(x)\)≥0.5,y=1,否则,y=0。

当希望获得更高的P,提升阈值,但召回率下降;

当希望获得更高的R,降低阈值,但查准率下降。

单纯追求高P或者高R都是不可取的,直接取两者的算数平均值是不明智的。可以选择调和平均值:

设计算法的一般思路

吴恩达老师机器学习课程chapter05——评估模型的更多相关文章

  1. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  2. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  3. 吴恩达《机器学习》课程总结(5)_logistic回归

    Q1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键.注意logistics回归又称 逻辑回归,但他是分类问题 ...

  4. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  5. 吴恩达《机器学习》课程笔记——第七章:Logistic回归

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...

  6. 吴恩达《机器学习》课程总结(18)_照片OCR

    18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字. (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首 ...

  7. 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归

    ❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...

  8. 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)

    1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...

  9. 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)

    1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当 ...

  10. 跟我学算法-吴恩达老师的logsitic回归

    logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率 A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数 dz ...

随机推荐

  1. ABAP 拼接PDF

    参考标准程序RSPO_TEST_MERGE_PDF_FILES*--合并PDF data: pdf_merger type ref to cl_rspo_pdf_merge. data: ex typ ...

  2. k8s之pod的生命周期

    pod生命周期 和一个个独立的应用容器一样,Pod 也被认为是相对临时性(而不是长期存在)的实体. Pod 会被创建.赋予一个唯一的 ID(UID),并被调度到节点,并在终止(根据重启策略)或删除之前 ...

  3. element的表格组件label宽度设置

  4. VMware-SSH协议的认证方式

    SSH1协议支持非对称密钥认证方式.口令认证,无法保证连接的完整性. SSH2协议支持SSH1协议支持的所有认证方式,增加数据保密性. 基于主机的认证方式[!不安全!] 当本地计算机收到执行远程命令的 ...

  5. python使用win32gui操作窗口

    激活指定窗口 import win32gui import win32con def match_windows(win_title): """ 查找指定窗口 :para ...

  6. dp-状压dp

    https://www.bilibili.com/video/BV1Z4411x7Kw?from=search&seid=13855865082722302053 状压介绍: 状态表示: 转移 ...

  7. Containerd 安装及使用(yum及源码)

    yum 安装containerd 一.下载源码库: wget -O /etc/yum.repos.d/docker-ce.repo https://mirrors.aliyun.com/docker- ...

  8. leecode75. 颜色分类

    75. 颜色分类 给定一个包含红色.白色和蓝色.共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 我们使用整数 0. 1 和 2 分别表示 ...

  9. PY0271验证码的创建

    生成的 随机背景色的 效果 from PIL import Image,ImageDraw,ImageFont,ImageFilterimport random# 设置随机的背景颜色.def rndC ...

  10. HIVE-CREATE TABLE

    (1) create table 表A as select 字段 from 表B; (2) create table 表A stored as parquet as select 字段 from 表B ...