[EULAR文摘] 利用蛋白组学技术开发一项蛋白评分用于预测TNFi疗效
利用蛋白组学技术开发一项蛋白评分与临床参数联用可以增强对TNF拮抗剂对RA疗效的预测效能
Cuppen BV, et al. EULAR 2015. Present
ID: OP0130.
背景: 对类风湿关节炎(RA)而言,
为了避免延迟有效治疗、潜在副作用和不必要的健康支出,
在治疗之前区分出TNFi无效者是很重要的。本研究在一大组炎性蛋白中搜索能预测生物制剂疗效的生物标记。
目的: 开发一项能预测TNFi疗效的蛋白评分,
并测试它与临床参数联用的预测效果。
方法: 本研究顺序纳入适合应用TNFi的RA患者,
这些患者也为BiOCURA患者注册登记所记录。在给予治疗之前采集血清,
利用蛋白组学平台xMP对57种炎性蛋白进行分析。治疗3个月后评估EULAR反应。采用一种监督聚类分析, 部分最小二乘法(partial
least squares, PLS), 筛选出蛋白组合,
并交叉验证以得到一种可重复的蛋白评分。采用多种罚分处理基线临床缺失值。通过单变量和多变量回溯筛选方法(p<0.1),甄别与EULAR优良应答有关的临床参数。
通过评估接收者操作特征曲线(ROC)的曲线下面积(AUC-ROC)、阴性预测值(NPV)和重分类指数(NRI),
比较联用或不联用蛋白评分的最终模型的预测能力。
结果: 共有192例患者接受治疗,
其中171例有临床反应数据。除了基线CRP和DAS28, 最小二乘法(PLS)还揭示了9种重要炎性蛋白,
包括sCD14、IFN-γ、MCP1、MIP1b、MIP3b、TARC、
sTNFRI、sTNFRII和TSLP。这些标记物可以解释治疗3个月后DAS28发生31.5%的变化。用于预测TNFi疗效的临床模型所含参数包括基线DAS28、未曾用过生物制剂、HAQ、RF阳性、同时使用MTX和糖皮质激素。联用蛋白评分并未改善预测模型的AUC-ROC的界值(0.80(0.73-0.87),
然而, 若将NPV预设界值定为≥0.9, 联用蛋白评分的预测模型可以将原归为低概率分类中的30例患者重新分类(参见表)。由此,
有应答者的分类改善了24.2%, 无应答者的分类改善了-4.8%, NRI=19.4%。
结论:
本研究显示结合了蛋白评分和临床参数的模型可以预测哪些患者可能对TNFi治疗无反应, 相较于单用临床参数,
该联合模型可以将更多患者分别归于不同风险类别。因此, 蛋白评分有助于个体化治疗, 从而优化医疗资源的使用。近期,
我们将进行外部验证。
表1.

原文链接或参见以下信息。
Ann Rheum Dis 2015;74:117 doi:10.1136/annrheumdis-2015-eular.4843
- Oral Presentations
OP0130 A Proteomics Approach to
Predict the TNF-Alpha Inhibitor Response in RA: The Added Clinical
Value of a Protein Score
- B.V. Cuppen1,
- P.M. Welsing1,
- W. de Jager2,
- R.D. Fritsch1,
- A.C. Marijnissen1,
- J.W. Bijlsma1,
- M.J. van der Veen3,
- J.M. van Laar1,
- F.P. Lafeber1
- on behalf of Investigators of the Society for Rheumatology Research
Utrecht (SRU)
+Author Affiliations
-
1Rheumatology & Clinical Immunology -
2Pediatric Immunology, University Medical Center Utrecht,
Utrecht -
3Rheumatology, st Jansdal Hospital, Harderwijk,
Netherlands
Abstract
Background In rheumatoid arthritis (RA) it
is of major importance to distinguish non-responders to TNF-alpha
inhibitor (TNFi) treatment before start to prevent a delay in
effective treatment, potential side-effects and unnecessary
healthcare costs. We investigated the ability of al large set of
inflammatory proteins to predict (absence of) response to
biological treatment.
Objectives To develop a protein score
predictive for response to TNFi treatment in RA and investigate its
added predictive value over clinical parameters alone.
Methods In consecutive RA patients eligible
for TNFi treatment as included in the BiOCURA registry, serum was
collected before start of treatment and analyzed on 57 inflammatory
proteins using xMAP technology. EULAR response was determined after
three months. A supervised cluster analysis method, partial least
squares (PLS) was used to select the best combination of proteins
and cross-validation to gain a reproducible protein score. Multiple
imputation was used to account for missing data of baseline
clinical parameters. Relevant clinical parameters for EULAR good
response were selected by performing a univariate (p<0.2) and
multivariable backward selection (p<0.1). The predictive ability
of the final model with and without the protein score was assessed
using the area under the receiving operater curve (AUC-ROC),
negative predictive values (NPV) and the reclassification index
(NRI).
Results Response was determined for 171 of
the 192 cases starting treatment. On top of CRP and DAS28 at
baseline, PLS revealed 9 important proteins: sCD14, IFNγ, MCP1,
MIP1b, MIP3b, TARC, sTNFRI, sTNFRII and TSLP. These markers were
able to explain 31.5% of the variance in DAS28 at 3
months.
Final models for prediction of TNFi
response included baseline DAS28, naivety for bDMARDs, HAQ, RF
positivity, concomitant MTX and GC use. The protein score did not
improve the AUC-ROC of 0.80 (0.73-0.87), however, when the
predefined cut-off for a NPV≥0.9 was set, the addition of the
protein score resulted in the classification of 30 extra patients
in the low probability category (table). An improved classification
was observed of 24.2% and -4.8% for patients with and without a
response respectively (NRI=19.42%).
View this table:
Conclusions We showed that a combination of
a protein score and clinical variables is able to predict absence
of EULAR good response to TNF inhibiting treatment and can classify
more patients at baseline in the appropriate risk category than
clinical variable alone. This protein score may therefore
contribute to a more patients tailored treatment, leading to a
better usage of the available resources. In the near future these
findings will be validated externally.
[EULAR文摘] 利用蛋白组学技术开发一项蛋白评分用于预测TNFi疗效的更多相关文章
- ComplexBrowser: a tool for identification and quantification of protein complexes in large-scale proteomics datasets(大规模蛋白组学数据集中鉴定和定量蛋白复合物)
文献名:ComplexBrowser: a tool for identification and quantification of protein complexes in large-scale ...
- MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性
一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...
- 解读人:谭亦凡,Macrophage phosphoproteome analysis reveals MINCLE-dependent and -independent mycobacterial cord factor signaling(巨噬细胞磷酸化蛋白组学分析揭示MINCLE依赖和非依赖的分支杆菌索状因子信号通路)(MCP换)
发表时间:2019年4月 IF:5.232 一. 概述: 分支杆菌索状因子TDM(trehalose-6,6’-dimycolate)能够与巨噬细胞C-型凝集素受体(CLR)MINCLE结合引起下游通 ...
- 【宏蛋白组】iMetaLab平台分析肠道宏蛋白质组数据
目录 一.iMetaLab简介 二.内置工具与模块 1. Data Processing module 2. Functional Analysis 3. R Developing environme ...
- 微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载
转载:https://mp.weixin.qq.com/s/xsL9GuLs7b3nRF8VeRtinQ 建立在高通量测序基础上的微生物群落研究,当前主要有三大类:基于16S/18S/ITS等扩增子做 ...
- 【讲座】朱正江——基于LC-MS的非靶向代谢组学
本次课程主题为<基于LC-MS的非靶向代谢组学>,主要分为代谢组学简介.代谢组学技术简介.非靶向代谢组学方法和数据采集.非靶向代谢组学数据分析和代谢物结构鉴定几个方面. 一.代谢组简介 基 ...
- MCP|ZWT|Precision de novo peptide sequencing using mirror proteases of Ac-LysargiNase and trypsin for large-scale proteomics(基于Ac-LysargiNase和胰蛋白酶的蛋白组镜像de novo测序)
一.概述 由于难以获得100%的蛋白氨基酸序列覆盖率,蛋白组de novo测序成为了蛋白测序的难点,由Ac-LysargiNase(N端蛋白酶)和胰蛋白酶构成的镜像酶组合可以解决这个问题并具有稳定性, ...
- GPB重磅!浙大李兰娟院士团队修饰多组学研究揭示炎症反应新机制
炎症 (inflammation) 是机体对致炎因子的损伤所发生的一种以防御反应为主的基本病理过程.翻译后修饰(PTMs)在调节多种炎症信号通路中起着重要作用,如磷酸化(phosphorylation ...
- 跟我一起学WCF(2)——利用.NET Remoting技术开发分布式应用
一.引言 上一篇博文分享了消息队列(MSMQ)技术来实现分布式应用,在这篇博文继续分享下.NET平台下另一种分布式技术——.NET Remoting. 二..NET Remoting 介绍 2.1 . ...
- Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography−Mass Spectrometry(基于超高效液相色谱-质谱法的高覆盖拟靶向脂质组学方法的开发)
文献名:Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance ...
随机推荐
- 谁说.NET没有GC调优?只改一行代码就让程序不再占用内存
经常看到有群友调侃"为什么搞Java的总在学习JVM调优?那是因为Java烂!我们.NET就不需要搞这些!"真的是这样吗?今天我就用一个案例来分析一下. 昨天,一位学生问了我一个问 ...
- Flask框架使用SQLAlchemy的ORM
SQLAlchemy 1.介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用 ...
- json提取器和beanshell处理器组合,将提取的所有id以数组返回
1.添加json提取器 2.添加beanshell处理器,并编写脚本 String str1 = vars.get("buildid_ALL"); log.info(str1); ...
- day02-Promise
Promise 1.Promise基本介绍 Promise是异步编程的一种解决方案,可以解决传统Ajax回调函数嵌套问题. 传统的Ajax异步调用在需要多个操作的时候,会导致多个回调函数嵌套,导致代码 ...
- ONNX模型分析与使用
本文大部分内容为对 ONNX 官方资料的总结和翻译,部分知识点参考网上质量高的博客. 一,ONNX 概述 深度学习算法大多通过计算数据流图来完成神经网络的深度学习过程. 一些框架(例如CNTK,Caf ...
- P8881 懂事时理解原神
简要题意 \(T\) 组数据,每组数据给出一个 \(n\) 个顶点,\(m\) 条边的无向无权图.求出使用下面的伪代码求 \(1\) 为源点的单源最短路答案正确的概率.保留 \(3\) 位小数. in ...
- xcode运行sh权限问题
Showing Recent Messages Command /bin/sh emitted errors but did not return a nonzero exit code to ind ...
- 前端 - JaveScrip
今日内容 JS简介 全程JaveScript但是与Jave没有关系 知识为了蹭Jave热度 它是一门前端工程师的编程语言 但是它本身有很多逻辑错误 IT行业鄙视链:前端.运维.测试.产品 前端想一统天 ...
- Array.from的9大优美用途!!!看了不后悔哦~~~~
纯手工打印调试~~~~ 九种用途~~~超赞的哦~~~~~ <!DOCTYPE html> <html lang="en"> <head> < ...
- wsl2和ArchLinux的安装
版权声明:本文章参考了哔哩哔哩稿件BV1sW411v7VZ,如侵权请主动联系删除 1.Wsl2的安装 启用适用于 Linux 的 Windows 子系统 在终端运行:dism.exe /online ...