C++编程笔记(GPU并行编程-2)
C++与CUDA
内存管理
封装
利用标准库容器实现对GPU的内存管理
#include <iostream>
#include <cuda_runtime.h>
#include <vector>
#include <cstddef>
template<class T>
struct CUDA_Allocator {
using value_type = T; //分配器必须要有的
T *allocate(size_t size) {
T *dataPtr = nullptr;
cudaError_t err = cudaMallocManaged(&dataPtr, size * sizeof(T));
if (err != cudaSuccess) {
return nullptr;
}
return dataPtr;
}
void deallocate(T *ptr, size_t size = 0) {
cudaError_t err = cudaFree(ptr);
}
};
__global__ void kernel(int *arr, int arrLen) {
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < arrLen; i += blockDim.x * gridDim.x) {
arr[i] = i;
//printf("i=%d\n", i);
}
}
int main() {
int size = 65523;
std::vector<int, CUDA_Allocator<int>> arr(size);
kernel<<<13, 28>>>(arr.data(), size);
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
for (int i = 0; i < size; ++i) {
printf("arr[%d]=%d\n", i, arr[i]);
}
}
其中allocate和deallocate是必须实现的
这里不用默认的std::allocate,使用自己定义的分配器,使得内存分配在GPU上
vector是会自动初始化的,如果不想自动初始化的化,可以在分配器中自己写构造函数
关于分配器的更多介绍
函数调用
template<class Func>
__global__ void para_for(int n, Func func) {
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < n; i += blockDim.x * gridDim.x) {
func(i);
}
}
//定义一个仿函数
struct MyFunctor {
__device__ void operator()(int i) {
printf("number %d\n", i);
}
};
int main() {
int size = 65513;
para_for<<<13,33>>>(size,MyFunctor{});
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
}
同样的,lambda也是被支持的,但是要先在cmake中开启
target_compile_options(${PROJECT_NAME} PUBLIC $<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>)

lambda
lambda写法
para_for<<<13, 33>>>(size, [] __device__(int i) { printf("number:%d\n", i); });
lambda捕获外部变量
一定要注意深拷贝和浅拷贝
如果这里直接捕获arr的话,是个深拷贝,这样是会出错的,因为拿到的arr是在CPU上的,而数据是在GPU上的,所以这里要浅拷贝指针,拿到指针的值,就是数据在GPU上的地址,这样就可以使用device函数对数据进行操作了
std::vector<int, CUDA_Allocator<int>> arr(size);
int*arr_ptr=arr.data();
para_for<<<13, 33>>>(size, [=] __device__(int i) { arr_ptr[i] = i; });
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
for (int i = 0; i < size; ++i) {
printf("arr[%d]=%d\n", i, arr[i]);
}
同时还可以这样捕获
para_for<<<13, 33>>>(size, [arr=arr.data()] __device__(int i) { arr[i] = i; });
时间测试
#include <chrono>
#define TICK(x) auto bench_##x = std::chrono::steady_clock::now();
#define TOCK(x) std::cout << #x ": " << std::chrono::duration_cast<std::chrono::duration<double> >(std::chrono::steady_clock::now() - bench_##x).count() << "s" << std::endl;
int main(){
int size = 65513;
std::vector<float, CUDA_Allocator<float>> arr(size);
std::vector<float> cpu(size);
TICK(cpu_sinf)
for (int i = 0; i < size; ++i) {
cpu[i] = sinf(i);
}
TOCK(cpu_sinf)
TICK(gpu_sinf)
para_for<<<16, 64>>>(
size, [arr = arr.data()] __device__(int i) { arr[i] = sinf(i); });
cudaError_t err = cudaDeviceSynchronize();
TOCK(gpu_sinf)
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
}
结果:

可以看到,求正弦GPU是要快于CPU的,这里差距还不明显,一般来说速度是由数量级上的差距的
C++编程笔记(GPU并行编程-2)的更多相关文章
- 五 浅谈CPU 并行编程和 GPU 并行编程的区别
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...
- 第五篇:浅谈CPU 并行编程和 GPU 并行编程的区别
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...
- 三 GPU 并行编程的运算架构
前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别?本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流, ...
- 第三篇:GPU 并行编程的运算架构
前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别? 本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流 ...
- 四 GPU 并行编程的存储系统架构
前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理 ...
- 第四篇:GPU 并行编程的存储系统架构
前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理 ...
- 【并行计算-CUDA开发】GPU并行编程方法
转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1. 利用现有的G ...
- 大数据学习笔记3 - 并行编程模型MapReduce
分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据 ...
- C#并发编程之初识并行编程
写在前面 之前微信公众号里有一位叫sara的朋友建议我写一下Parallel的相关内容,因为手中商城的重构工作量较大,一时之间无法抽出时间.近日,这套系统已有阶段性成果,所以准备写一下Parallel ...
- GPU并行编程小结
http://peghoty.blog.163.com/blog/static/493464092013016113254852/ http://blog.csdn.net/augusdi/artic ...
随机推荐
- 将java的项目jar包打成镜像
一.镜像.容器相关知识的概述 Docker 镜像 docker镜像是一个特殊的文件系统,除了提供容器运行时所需的程序.库.资源.配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷.环境变量 ...
- MySQL数据库中配置文件 read_only 参数的有关说明
1.对于MySQL单实例数据库和master库,如果需要设置为只读状态,需要进行如下操作和设置: 将MySQL设置为只读状态的命令(可以登录mysql执行下面命令, 或者在my.cnf配置文件中添加& ...
- jenkins修改默认的workspace工作目录
1.首先,找到Jenkins安装根目录,寻找config.xml文件,在config.xml文件内,查找 workspaceDir 关键字,将你的自定义 工作空间根目录 地址替换默认的地址 # cd ...
- 1.nexus的安装
1,Nexus 介绍 Nexus是什么 Nexus 是一个强大的maven仓库管理器,它极大地简化了本地内部仓库的维护和外部仓库的访问. 不仅如此,他还可以用来创建yum.pypi.npm.docke ...
- PAT甲级英语单词整理
proper 正确 合适 vertex(vertices)顶点 respectively 个别 分别 indices 指标 索引 shipping 运输 incompatible 不相容 oxidiz ...
- Linux 下模拟制作块设备并挂载
Linux 下模拟制作块设备并挂载 作者:Grey 原文地址: 博客园:Linux 下模拟制作块设备并挂载 CSDN:Linux 下模拟制作块设备并挂载 环境 CentOS-7 下载地址:下载 Cen ...
- 后端框架的学习----mybatis框架(3、配置解析)
3.配置解析 1.核心配置文件 2.环境配置(environment) 3.属性(properties) 可以通过properties属性来实现引用配置文件 这些属性可以在外部进行配置,并可以进行动态 ...
- Vue学习之--------监视属性(2022/7/10)
文章目录 1.监视属性 1.1 监视属性--天气案例 1.1.1 基础知识 1.1.2 代码实例 1.1.2 测试效果 1.2 深度监视-天气案例 1.2.1 基础知识 1.2.2 代码实例 1.2. ...
- 在vue项目中禁用eslint
文章目录 1.在创建项目的时候不自动使用eslint 2.在package.json中删除所有的eslint,然后重新install 3.按照图片注释(亲测可用) 在使用eslin进行规则验证时,一点 ...
- Vue中常用的几种传值方式
Vue中常用的几种传值方式 1. 父传子 父传子的实现方式就是通过props属性,子组件通过props属性接收从父组件传过来的值,而父组件传值的时候使用 v-bind 将子组件中预留的变量名绑定为da ...