C++与CUDA

内存管理

封装

利用标准库容器实现对GPU的内存管理

#include <iostream>
#include <cuda_runtime.h>
#include <vector>
#include <cstddef>
template<class T>
struct CUDA_Allocator {
using value_type = T; //分配器必须要有的
T *allocate(size_t size) {
T *dataPtr = nullptr;
cudaError_t err = cudaMallocManaged(&dataPtr, size * sizeof(T));
if (err != cudaSuccess) {
return nullptr;
}
return dataPtr;
}
void deallocate(T *ptr, size_t size = 0) {
cudaError_t err = cudaFree(ptr);
}
};
__global__ void kernel(int *arr, int arrLen) {
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < arrLen; i += blockDim.x * gridDim.x) {
arr[i] = i;
//printf("i=%d\n", i);
}
} int main() {
int size = 65523;
std::vector<int, CUDA_Allocator<int>> arr(size);
kernel<<<13, 28>>>(arr.data(), size);
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
for (int i = 0; i < size; ++i) {
printf("arr[%d]=%d\n", i, arr[i]);
}
}

其中allocatedeallocate是必须实现的

这里不用默认的std::allocate,使用自己定义的分配器,使得内存分配在GPU上

vector是会自动初始化的,如果不想自动初始化的化,可以在分配器中自己写构造函数

关于分配器的更多介绍

函数调用

template<class Func>
__global__ void para_for(int n, Func func) {
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < n; i += blockDim.x * gridDim.x) {
func(i);
}
}
//定义一个仿函数
struct MyFunctor {
__device__ void operator()(int i) {
printf("number %d\n", i);
}
}; int main() {
int size = 65513;
para_for<<<13,33>>>(size,MyFunctor{});
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
}

同样的,lambda也是被支持的,但是要先在cmake中开启

target_compile_options(${PROJECT_NAME} PUBLIC $<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>)

lambda

lambda写法

  para_for<<<13, 33>>>(size, [] __device__(int i) { printf("number:%d\n", i); });

lambda捕获外部变量

一定要注意深拷贝和浅拷贝

如果这里直接捕获arr的话,是个深拷贝,这样是会出错的,因为拿到的arr是在CPU上的,而数据是在GPU上的,所以这里要浅拷贝指针,拿到指针的值,就是数据在GPU上的地址,这样就可以使用device函数对数据进行操作了

  std::vector<int, CUDA_Allocator<int>> arr(size);
int*arr_ptr=arr.data();
para_for<<<13, 33>>>(size, [=] __device__(int i) { arr_ptr[i] = i; });
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
for (int i = 0; i < size; ++i) {
printf("arr[%d]=%d\n", i, arr[i]);
}

同时还可以这样捕获

  para_for<<<13, 33>>>(size, [arr=arr.data()] __device__(int i) { arr[i] = i; });

时间测试


#include <chrono>
#define TICK(x) auto bench_##x = std::chrono::steady_clock::now();
#define TOCK(x) std::cout << #x ": " << std::chrono::duration_cast<std::chrono::duration<double> >(std::chrono::steady_clock::now() - bench_##x).count() << "s" << std::endl; int main(){
int size = 65513; std::vector<float, CUDA_Allocator<float>> arr(size);
std::vector<float> cpu(size); TICK(cpu_sinf)
for (int i = 0; i < size; ++i) {
cpu[i] = sinf(i);
}
TOCK(cpu_sinf) TICK(gpu_sinf)
para_for<<<16, 64>>>(
size, [arr = arr.data()] __device__(int i) { arr[i] = sinf(i); });
cudaError_t err = cudaDeviceSynchronize();
TOCK(gpu_sinf)
if (err != cudaSuccess) {
printf("Error:%s\n", cudaGetErrorName(err));
return 0;
}
}

结果:



可以看到,求正弦GPU是要快于CPU的,这里差距还不明显,一般来说速度是由数量级上的差距的

学习链接

C++编程笔记(GPU并行编程-2)的更多相关文章

  1. 五 浅谈CPU 并行编程和 GPU 并行编程的区别

    前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...

  2. 第五篇:浅谈CPU 并行编程和 GPU 并行编程的区别

    前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...

  3. 三 GPU 并行编程的运算架构

    前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别?本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流, ...

  4. 第三篇:GPU 并行编程的运算架构

    前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别? 本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流 ...

  5. 四 GPU 并行编程的存储系统架构

    前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理 ...

  6. 第四篇:GPU 并行编程的存储系统架构

    前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理 ...

  7. 【并行计算-CUDA开发】GPU并行编程方法

    转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1.      利用现有的G ...

  8. 大数据学习笔记3 - 并行编程模型MapReduce

    分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据 ...

  9. C#并发编程之初识并行编程

    写在前面 之前微信公众号里有一位叫sara的朋友建议我写一下Parallel的相关内容,因为手中商城的重构工作量较大,一时之间无法抽出时间.近日,这套系统已有阶段性成果,所以准备写一下Parallel ...

  10. GPU并行编程小结

    http://peghoty.blog.163.com/blog/static/493464092013016113254852/ http://blog.csdn.net/augusdi/artic ...

随机推荐

  1. 干货分享|使用 Istio 实现灰度发布

    Kubernetes 作为基础平台,提供了强大的容器编排能力.但是在其上部署业务和服务治理上,仍然会面对一些复杂性和局限性.在服务治理上,已经有许多成熟的 ServiceMesh 框架用于扩充其能力, ...

  2. Nginx相关模块学习使用实践指南

    转载自:https://www.bilibili.com/read/cv16150654?spm_id_from=333.999.0.0 0x01 Nginx 常用模块使用实践 官方模块使用手册:ht ...

  3. 升级openssl和openssh脚本

    #!/bin/bash # 原先的版本号信息 # openssl version #OpenSSL 1.0.2k-fips 26 Jan 2017 # ssh -V #OpenSSH_7.4p1, O ...

  4. Elasticsearch 开发入门 - Python

    文章转载自:https://elasticstack.blog.csdn.net/article/details/111573923 前提条件 你需要在你的电脑上安装 python3 你需要安装 do ...

  5. Ubuntu20.04和Docker环境下安装Redash中文版

    创建Ubunt20.04虚拟机,请参考:https://www.linuxidc.com/Linux/2020-03/162547.htm 一.安装基础环境: # 1.更换APT国内源 sudo se ...

  6. Linux+Wine运行QQTIM (2022年9月)

    测试的版本Tim3.4.0 QQ9.6.7 如果你的系统没有Wine先装Wine,Wine在各大发行版的源都能找到.记住32位和64位的Wine都要装 去https://tubentubentu.pa ...

  7. aws-cli命令-vpcs及subnets相关的查询

    关于AWS上vpcs及subnets相关的查询,常用的命令如下: # 查询所有的vpc信息 aws ec2 describe-vpcs --output json # 查询所有所有的subnet相关的 ...

  8. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  9. 关于Vue多线程的思考

    在前端调用的时候,我们难免需要同一时刻向后端请求多组数据或是总是期待着是否存在一个独立的线程去处理一系列的数据.线程相应,资源的抢占这是前端较为麻烦的点.这里就来聊聊我在前端踩的坑. 首先是线程问题说 ...

  10. 2021 CCPC 威海站 VP记录(题解)

    2021 CCPC 威海站 VP记录(题解) 题目顺序为vp时开题顺序: A - Goodbye, Ziyin! 签到,连边数小于等于2的可以作为二叉树根,若有大于4的直接输出0. code: voi ...