上一篇讲了普通轮询、加权轮询的两种实现方式,重点讲了平滑加权轮询算法,并在文末留下了悬念:节点出现分配失败时降低有效权重值;成功时提高有效权重值(但不能大于weight值)

本文在平滑加权轮询算法的基础上讲,还没弄懂的可以看上一篇文章。

现在来模拟实现:平滑加权轮询算法的降权和提权

1.两个关键点

节点宕机时,降低有效权重值;

节点正常时,提高有效权重值(但不能大于weight值);

注意:降低或提高权重都是针对有效权重

2.代码实现

2.1.服务节点类

package com.yty.loadbalancingalgorithm.wrr;

/**
* String ip:负载IP
* final Integer weight:权重,保存配置的权重
* Integer effectiveWeight:有效权重,轮询的过程权重可能变化
* Integer currentWeight:当前权重,比对该值大小获取节点
* 第一次加权轮询时:currentWeight = weight = effectiveWeight
* 后面每次加权轮询时:currentWeight 的值都会不断变化,其他权重不变
* Boolean isAvailable:是否存活
*/
public class ServerNode implements Comparable<ServerNode>{
private String ip;
private final Integer weight;
private Integer effectiveWeight;
private Integer currentWeight;
private Boolean isAvailable; public ServerNode(String ip, Integer weight){
this(ip,weight,true);
}
public ServerNode(String ip, Integer weight,Boolean isAvailable){
this.ip = ip;
this.weight = weight;
this.effectiveWeight = weight;
this.currentWeight = weight;
this.isAvailable = isAvailable;
} public String getIp() {
return ip;
} public void setIp(String ip) {
this.ip = ip;
} public Integer getWeight() {
return weight;
} public Integer getEffectiveWeight() {
return effectiveWeight;
} public void setEffectiveWeight(Integer effectiveWeight) {
this.effectiveWeight = effectiveWeight;
} public Integer getCurrentWeight() {
return currentWeight;
} public void setCurrentWeight(Integer currentWeight) {
this.currentWeight = currentWeight;
} public Boolean isAvailable() {
return isAvailable;
}
public void setIsAvailable(Boolean isAvailable){
this.isAvailable = isAvailable;
} // 每成功一次,恢复有效权重1,不超过配置的起始权重
public void onInvokeSuccess(){
if(effectiveWeight < weight) effectiveWeight++;
}
// 每失败一次,有效权重减少1,无底线的减少
public void onInvokeFault(){
effectiveWeight--;
} @Override
public int compareTo(ServerNode node) {
return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1);
} @Override
public String toString() {
return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight
+ ", currentWeight=" + currentWeight + ", isAvailable=" + isAvailable + "}";
}
}

2.2.平滑轮询算法降权和提权

package com.yty.loadbalancingalgorithm.wrr;

import java.util.ArrayList;
import java.util.List; /**
* 加权轮询算法:加入存活状态,降权使宕机权重降低,从而不会被选中
*/
public class WeightedRoundRobinAvailable { private static List<ServerNode> serverNodes = new ArrayList<>();
// 准备模拟数据
static {
serverNodes.add(new ServerNode("192.168.1.101",1));// 默认为true
serverNodes.add(new ServerNode("192.168.1.102",3,false));
serverNodes.add(new ServerNode("192.168.1.103",2));
} /**
* 按照当前权重(currentWeight)最大值获取IP
* @return ServerNode
*/
public ServerNode selectNode(){
if (serverNodes.size() <= 0) return null;
if (serverNodes.size() == 1)
return (serverNodes.get(0).isAvailable()) ? serverNodes.get(0) : null; // 权重之和
Integer totalWeight = 0;
ServerNode nodeOfMaxWeight = null; // 保存轮询选中的节点信息
synchronized (serverNodes){
StringBuffer sb1 = new StringBuffer();
StringBuffer sb2 = new StringBuffer();
sb1.append(Thread.currentThread().getName()+"==加权轮询--[当前权重]值的变化:"+printCurrentWeight(serverNodes));
// 有限权重总和可能发生变化
for(ServerNode serverNode : serverNodes){
totalWeight += serverNode.getEffectiveWeight();
} // 选出当前权重最大的节点
ServerNode tempNodeOfMaxWeight = serverNodes.get(0);
for (ServerNode serverNode : serverNodes) {
if (serverNode.isAvailable()) {
serverNode.onInvokeSuccess();//提权
sb2.append(Thread.currentThread().getName()+"==[正常节点]:"+serverNode+"\n");
} else {
serverNode.onInvokeFault();//降权
sb2.append(Thread.currentThread().getName()+"==[宕机节点]:"+serverNode+"\n");
} tempNodeOfMaxWeight = tempNodeOfMaxWeight.compareTo(serverNode) > 0 ? tempNodeOfMaxWeight : serverNode;
}
// 必须new个新的节点实例来保存信息,否则引用指向同一个堆实例,后面的set操作将会修改节点信息
nodeOfMaxWeight = new ServerNode(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.isAvailable());
nodeOfMaxWeight.setEffectiveWeight(tempNodeOfMaxWeight.getEffectiveWeight());
nodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight()); // 调整当前权重比:按权重(effectiveWeight)的比例进行调整,确保请求分发合理。
tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight);
sb1.append(" -> "+printCurrentWeight(serverNodes)); serverNodes.forEach(serverNode -> serverNode.setCurrentWeight(serverNode.getCurrentWeight()+serverNode.getEffectiveWeight())); sb1.append(" -> "+printCurrentWeight(serverNodes));
System.out.print(sb2); //所有节点的当前信息
System.out.println(sb1); //打印当前权重变化过程
}
return nodeOfMaxWeight;
} // 格式化打印信息
private String printCurrentWeight(List<ServerNode> serverNodes){
StringBuffer stringBuffer = new StringBuffer("[");
serverNodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") );
return stringBuffer.substring(0, stringBuffer.length() - 1) + "]";
} // 并发测试:两个线程循环获取节点
public static void main(String[] args) throws InterruptedException {
// 循环次数
int loop = 18; new Thread(() -> {
WeightedRoundRobinAvailable weightedRoundRobin1 = new WeightedRoundRobinAvailable();
for(int i=1;i<=loop;i++){
ServerNode serverNode = weightedRoundRobin1.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n");
}
}).start();
//
new Thread(() -> {
WeightedRoundRobinAvailable weightedRoundRobin2 = new WeightedRoundRobinAvailable();
for(int i=1;i<=loop;i++){
ServerNode serverNode = weightedRoundRobin2.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n");
}
}).start(); //main 线程睡了一下,再偷偷把 所有宕机 拉起来:模拟服务器恢复正常
Thread.sleep(5);
for (ServerNode serverNode:serverNodes){
if(!serverNode.isAvailable())
serverNode.setIsAvailable(true);
}
}
}

3.分析结果

执行结果:将执行结果的前中后四次抽出来分析

Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=1, isAvailable=true}

Thread-0==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-0==加权轮询--[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,-1,4]

Thread-0==第1次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

……

Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=6, isAvailable=true}

Thread-1==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=-7, currentWeight=-21, isAvailable=false}

Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-1==加权轮询--[当前权重]值的变化:[6,-21,12] -> [6,-21,15] -> [7,-28,17]

Thread-1==第5次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

……

Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

Thread-0==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=-19, isAvailable=true}

Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-0==加权轮询--[当前权重]值的变化:[13,-19,12] -> [7,-19,12] -> [8,-16,14]

Thread-0==第15次轮询选中[当前权重最大]的节点:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

……

Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=2, isAvailable=true}

Thread-1==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=2, isAvailable=true}

Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-1==加权轮询--[当前权重]值的变化:[2,2,2] -> [2,2,-4] -> [3,5,-2]

Thread-1==第18次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

分析

一开始权重最高的节点虽然是宕机了,但是还是会被选中并返回;

“有效权重总和” 和 “当前权重总和”都减少了1,因为设置轮询到失败节点,都会自减1;

到第5次轮询时,当前权重已经变成了[7,-28,17],可以看出宕机节点越往后当前权重越小,所以后面根本不会再选中宕机节点,虽然没剔除故障节点,但却起到不分配宕机节点

到第15次轮询时,有效权重已经恢复起始值,当前权重变为[8,-16,14],当前权重只能慢慢恢复,并不是节点一正常就立即恢复宕机过的节点,起到对故障节点的缓冲恢复(故障过的节点可能还存在问题);

最后1次轮询时,因为没有宕机节点,所以有效权重不变,当前权重已经恢复[3,5,-2],如果再轮询一次,那就会访问到一开始故障的节点了。

4.结论

降权起到缓慢“剔除”宕机节点的效果;提权起到缓冲恢复宕机节点的效果。

对比上一篇文章可以看到:

当前权重(currentWeight):针对的是节点的选择,受有效权重影响,起到缓慢“剔除”宕机节点和缓冲恢复宕机节点的效果,当前权重最高就会被选择;

有效权重(effectiveWeight):针对的是权重的变化,也即是降权和提权,降权/提权只会直接操作有效权重;

权重(weight):针对的是存储起始配置,限定有效权重的提权。

Java实现负载均衡算法--轮询和加权轮询

Java往期文章

Java全栈学习路线、学习资源和面试题一条龙

我心里优秀架构师是怎样的?

免费下载经典编程书籍

Java实现平滑加权轮询算法--降权和提权的更多相关文章

  1. C# Nginx平滑加权轮询算法

    代码很简单,但算法很经典,话不多说,直接上代码. public struct ServerConfig { /// <summary> /// 初始权重 /// </summary& ...

  2. 负载均衡算法: 简单轮询算法, 平滑加权轮询, 一致性hash算法, 随机轮询, 加权随机轮询, 最小活跃数算法(基于dubbo) java代码实现

    直接上干活 /** * @version 1.0.0 * @@menu <p> * @date 2020/11/17 16:28 */ public class LoadBlance { ...

  3. Dubbo加权轮询负载均衡的源码和Bug,了解一下?

    本文是对于Dubbo负载均衡策略之一的加权随机算法的详细分析.从2.6.4版本聊起,该版本在某些情况下存在着比较严重的性能问题.由问题入手,层层深入,了解该算法在Dubbo中的演变过程,读懂它的前世今 ...

  4. Java实现负载均衡算法--轮询和加权轮询

    1.普通轮询算法 轮询(Round Robin,RR)是依次将用户的访问请求,按循环顺序分配到web服务节点上,从1开始到最后一台服务器节点结束,然后再开始新一轮的循环.这种算法简单,但是没有考虑到每 ...

  5. 负载均衡算法WeightedRoundRobin(加权轮询)简介及算法实现

    Nginx的负载均衡默认算法是加权轮询算法,本文简单介绍算法的逻辑,并给出算法的Java实现版本. 本文参考了Nginx的负载均衡 - 加权轮询 (Weighted Round Robin).     ...

  6. Nginx的负载均衡 - 加权轮询 (Weighted Round Robin) 上篇

    Nginx版本:1.9.1 我的博客:http://blog.csdn.net/zhangskd 算法介绍 来看一个简单的Nginx负载均衡配置. http { upstream cluster { ...

  7. Nginx的负载均衡 - 加权轮询 (Weighted Round Robin) 下篇

    Nginx版本:1.9.1 我的博客:http://blog.csdn.net/zhangskd 上篇blog讲述了加权轮询算法的原理.以及负载均衡模块中使用的数据结构,接着我们来看看加权轮询算法的具 ...

  8. loadbalance轮询算法 java实现

    /** * <html> * <body> * <P> Copyright JasonInternational</p> * <p> All ...

  9. Nginx 负载均衡-加权轮询策略剖析

    本文介绍的是客户端请求在多个后端服务器之间的均衡,注意与客户端请求在多个nginx进程之间的均衡相区别(Nginx根据每个工作进程的当前压力调整它们获取监听套接口的几率,那些当前比较空闲的工作进程有更 ...

随机推荐

  1. 爬虫系列之Scrapy框架

    一 scrapy框架简介 1 介绍 (1) 什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能 ...

  2. shellLab实验报告

    一.预备知识 阅读课本CSAPP的第八章后完成本次实验,要求熟练掌握以下内容: 进程的概念.状态以及控制进程的几个函数(fork,waitpid,execve). 信号的概念,会编写正确安全的信号处理 ...

  3. 《前端运维》二、Nginx--4代理、负载均衡与其他

    一.代理服务 比较容易理解吧,简单来说.客户端访问服务器并不是直接访问的,而是通过中间代理服务器,代理服务器再去访问服务器.就像一个中转站一样,无论什么,只要从客户端到服务器,你就要通过我. 一)正向 ...

  4. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  5. 一种基于USB转串口的设备如何赋予权限

    1. 利用open打开USB转串口的设备遇到打开异常. 若用vs调试代码,则需要usermod 对应归到watson组下,因为watson这个是vs ssh连接虚拟机的用户名,若用root则无法使用改 ...

  6. Anonymous Inner Class(匿名内部类)是否可以继承其它类?是否可以实现接口?

    可以继承其他类或实现其他接口,在 Swing 编程和 Android 开发中常用此方式来 实现事件监听和回调.

  7. 解释基于XML Schema方式的切面实现?

    在这种情况下,切面由常规类以及基于XML的配置实现.

  8. java-設計模式-原型模式

    原型模式 是一种创建型设计模式, 使你能够复制已有对象, 而又无需使代码依赖它们所属的类. 問題: 如果我們要複製一個類實例: 首先, 你必须新建一个属于相同类的对象. 然后, 你必须遍历原始对象的所 ...

  9. 二、mycat15种分片规则

    一.分片枚举 通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下: <tab ...

  10. memcached 是如何做身份验证的?

    没有身份认证机制!memcached 是运行在应用下层的软件(身份验证应该是应用 上层的职责).memcached 的客户端和服务器端之所以是轻量级的,部分原因就 是完全没有实现身份验证机制.这样,m ...