CF1386C口胡
自己在物理课上编了一道题,大概就是这题把删除区间的边改为保留区间的边。。。都不觉得判断短路和判断二分图有点儿像吗
题意:给定一张无向图,每次暂时删除一个区间内的边,问删除后这个区间是否为二分图。
首先倍长区间,删除区间变为保留区间。
考虑对每条边 \(i\) 处理一个序列上的一个位置 \(e_i\),表示对原图加入 \([e_i,i]\) 的边后整张图不是二分图,取最大的 \(e_i\)。
很容易能够发现有 \(e_i \leq e_{i+1}\),也就是 \(e_i\) 存在单调性。
左端点单调不递减,考虑使用双指针。
由于判断二分图相当于判断是否存在奇环,而偶环具有传递性(如果有两个偶环,那么套在一起后一定没有奇环),所以考虑使用 LCT 动态维护区间图的一颗生成树。
加入一条边后考虑两件事:
- 如果加入后产生了奇环,应该删除哪条边?
很明显是令左端点右移,直到没有奇环位置。
- 如果加入后产生了偶环,应该删掉哪条边?
很明显是偶环上第一个被加入的边。
预处理出 \(e_i\) 之后,就可以通过判断 \(\max_{i=l}^r e_i < l\) 来判断一个区间是否为二分图了。通过 P3901 的 trick,维护前缀 \(\max\) 即可做到 \(O(n\log n+q)\)。
CF1386C口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- 项目架构(结构)搭建:主流结构(UITabBarController + 导航控制器)
/* 项目架构(结构)搭建:主流结构(UITabBarController + 导航控制器) -> 项目开发方式 1.storyboard 2.纯代码 */ @interface AppDele ...
- 网管必须必须知道的知识!ARP攻击与欺骗的原理!
ARP攻击与ARP欺骗原理及应用 1.ARP概述以及攻击原理 2.ARP欺骗原理 3.ARP故障处理 1.什么是ARP协议?将一个已知的IP地址解析成MAC地址.无论是ARP攻击还是ARP欺骗,它们都 ...
- python数据类型内置方法
内容概要 列表内置方法 字典内置方法 字符串转换成字典的方法 eval() 元组内置方法 元组相关笔试题 集合内置方法 列表内置方法 l1 = [2, 4, 5, 7, 3, 9, 0, 6] # 升 ...
- Solution -「LGR-087」「洛谷 P6860」象棋与马
\(\mathcal{Description}\) Link. 在一个 \(\mathbb R^2\) 的 \((0,0)\) 处有一颗棋子,对于参数 \(a,b\),若它当前坐标为 \((x ...
- 【故障公告】k8s 开船记:增加控制舱(control-plane)造成的翻船
春节期间我们更换了 kubernetes 生产集群,旧集群的 kubernetes 版本是 1.17.0,新集群版本是 1.23.3,新集群上部署了 dapr,最近准备将更多独立部署的服务器部署到 k ...
- Windows禁用445端口
今天来公司有好多电脑感染了0day病毒, 写个脚本,一键执行禁用445,135-139端口.Windows7测试没有问题. reg add "HKEY_LOCAL_MACHINE\SYSTE ...
- Swagger2简单实用
前后端分离很好用的api <!--swagger--> <dependency> <groupId>io.springfox</groupId> < ...
- 阿里云K8S节点NotReady状态
开发部署pod的时候在wayne平台上部署不上去,删除也删除不了 先删除 kubectl delete pod pod-name --grace-period=0 --force 删除之后然后部署新的 ...
- centos7对外开放端口号
前提:防火墙处于打开状态 1:查看防护墙启动状态:systemctl status firewalld 2:开启:systemctl start firewalld 3:关闭:systemctl s ...
- 【整理】Linux:set -eux
参数 参考原文:https://blog.csdn.net/textdemo123/article/details/100694371 我们经常见到很多设立了脚本 打头会写如下 set -e 或者:s ...