CF1386C口胡
自己在物理课上编了一道题,大概就是这题把删除区间的边改为保留区间的边。。。都不觉得判断短路和判断二分图有点儿像吗
题意:给定一张无向图,每次暂时删除一个区间内的边,问删除后这个区间是否为二分图。
首先倍长区间,删除区间变为保留区间。
考虑对每条边 \(i\) 处理一个序列上的一个位置 \(e_i\),表示对原图加入 \([e_i,i]\) 的边后整张图不是二分图,取最大的 \(e_i\)。
很容易能够发现有 \(e_i \leq e_{i+1}\),也就是 \(e_i\) 存在单调性。
左端点单调不递减,考虑使用双指针。
由于判断二分图相当于判断是否存在奇环,而偶环具有传递性(如果有两个偶环,那么套在一起后一定没有奇环),所以考虑使用 LCT 动态维护区间图的一颗生成树。
加入一条边后考虑两件事:
- 如果加入后产生了奇环,应该删除哪条边?
很明显是令左端点右移,直到没有奇环位置。
- 如果加入后产生了偶环,应该删掉哪条边?
很明显是偶环上第一个被加入的边。
预处理出 \(e_i\) 之后,就可以通过判断 \(\max_{i=l}^r e_i < l\) 来判断一个区间是否为二分图了。通过 P3901 的 trick,维护前缀 \(\max\) 即可做到 \(O(n\log n+q)\)。
CF1386C口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
随机推荐
- DLL链接库
转载请注明来源:https://www.cnblogs.com/hookjc/ 2. 静态链接库 对静态链接库的讲解不是本文的重点,但是在具体讲解 DLL 之前,通过一个静态链接库的例子可以快速地帮助 ...
- python篇第8天【运算符】
第7天休息 什么是运算符? 本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. Python语言支持以 ...
- python小白记录三——pycharm+selenium搭建环境之 no module named 'selenium'异常解决
在pycharm上搭建python+selenium自动化测试环境时,遇到一个很坑的问题:no moduel named 'selenium' 如下图: 1.查看你的python是否正确安装了sele ...
- 6、架构--Nginx虚拟主机(基于多ip、端口、域名方式)、日志配置、Nginx模块(访问控制模块、状态监控模块、访问链接控制模块)
笔记 1.晨考 2.昨日问题 3.今日内容 1.Nginx虚拟主机 - 基于多IP的方式 - 基于多端口的方式 - 基于多域名的方式 2.日志配置 Nginx有非常灵活的日志记录模式,每个级别的配置可 ...
- redis(一)-----初识redis
Redis是一种基于键值对(key-value)的NoSQL数据库 因为Redis会将所有数据都存放在内存 中,所以它的读写性能非常惊人.不仅如此,Redis还可以将内存的数据利 用快照和日志的形式保 ...
- iptables 的使用 与 模块
今日内容 Iptables 的使用 模块· 内容详细 一.Iptables 的使用 1.使用前奏 1.安装Iptables [root@m01 ~]# yum install iptables* 2. ...
- nginx负载均衡初体验
本例采取简单的轮询策略进行nginx的负载均衡处理. 在反向代理(参考:https://www.cnblogs.com/ilovebath/p/14771571.html)的基础上增加负载均衡处理的n ...
- splunk设置索引周期和索引大小
步骤一: 编辑/opt/splunk/etc/apps/search/local/indexs.conf ,在每个索引下面 加入最后两行内容 [messages] coldPath = $SPLUNK ...
- BGP协议测试—信而泰网络测试仪实操
关键词 BGP; 协议仿真; 测试原理. 前言:当前信息化时代之下,数据传输已经成为了日常工作和生活必不可少的重要组成部分,网络服务的易得性和可靠性也因此得到广泛关注.这其中负责网络正常工作的诸多协 ...
- 思迈特软件Smartbi:Excel数据分析常用函数汇总!
多传统行业的数据分析师只要求掌握Excel即可,会SPSS/SAS是加分项.即使在挖掘满街走,Python不如狗的互联网数据分析界,Excel也是不可替代的. Excel是我们工作中经常使用的一种工具 ...