AVL tree 高度上下界推导
1. 最大高度对应 Node 数量 \(N_{h}\) 的递归公式
设有一棵 AVL tree 的高度为 \(h\), 对于该树, 构成该树的最少 node 数量为 \(N_{h}\) .
有: 最坏情况下, root 的两棵 subtree 高度为 \(h-1\) 和 \(h-2\) .
因此得到以下公式 (其中 \(h \in N^{+}\)):
\begin{cases}
0 &h=0 \\
1 &h=1 \\
N_{h-1}+N_{h-2}+1 &h\geq2
\end{cases}
\]
2. 证明 \(N_{h}=Fibonacci_{(h+2)}-1\)
2.1. 方法 1 - 数学归纳法
已知:
N_{h}&=\begin{cases}0 &h=0 \\ 1 &h=1 \\ N_{h-1}+N_{h-2}+1 &h \geq 2 \end{cases}\\
~\\
F_{h}&=F_{h-1}+F_{h-2}~~h\geq2
\end{aligned}
\]
且有:
N_{1}=F_{3}-1
\]
假设:
\]
则:
N_{k+2}&=N_{k}+N_{k+1}+1\\
&=F_{k+2}-1+F_{k+3}-1+1\\
&=F_{k+4}-1
\end{aligned}
\]
假设成立.
2.2. 方法 2 - 直接推导
当 \(h \geq 2\) 由:
&N_{h} = N_{h-1}+N_{h-2}+1 \\
\Rightarrow & N_{h}+1=(N_{h-1}+1)+(N_{h-2}+1)
\end{aligned}
\]
并且当 \(h=1\) 或 \(h=2\) 时, \(N_{h}=Fibonacci_{(h+2)}-1\) 也成立.
综上:
\]
3. \(N_{h}\) 的通项公式以及 h 的解和渐进记法
已知 Fibonacci sequence 的通项公式为:
\]
令 \(n=N_{h}\) , 根据 2.2 的证明, 得到:
\]
- 当 \(h\) 为偶数,
令 \(y=\big(\frac{1+\sqrt{5}}{2}\big)^{h+2}\) , 则 \(\big(\frac{1-\sqrt{5}}{2}\big)^{h+2}=y^{-1}\) , 代入上式得到:\[\begin{aligned}
&y^2-\sqrt{5}(n+1)y-1=0 \\
\Rightarrow~ &y=\frac{\sqrt{5}(n+1)+\sqrt{5(n+1)^2+4}}{2}
\end{aligned}
\]进而求出
\[\begin{aligned}
h&=-2+\log_{[(\sqrt{5}+1)/2]}{\frac{\sqrt{5}(n+1)+\sqrt{5(n+1)^2+4}}{2}} \\
&=-2+\frac{\ln{\big[~\sqrt{5}(n+1)+\sqrt{5(n+1)^2+4}~\big]}-\ln{2}}{\ln{(\sqrt{5}+1)}-\ln{2}} \\
&=O(\log{n})
\end{aligned}
\] - 当 \(h\) 为奇数,
令 \(y=\big(\frac{1+\sqrt{5}}{2}\big)^{h+2}\) , 则 \(\big(\frac{1-\sqrt{5}}{2}\big)^{h+2}=-y^{-1}\) , 代入上式得到:\[y=\frac{\sqrt{5}(n+1)+\sqrt{5(n+1)^2-4}}{2}
\]进而求出:
\[ \begin{aligned}
h&=-2+\frac{\ln{\big[~\sqrt{5}(n+1)+\sqrt{5(n+1)^2-4}~\big]}-\ln{2}}{\ln{(\sqrt{5}+1)}-\ln{2}} \\
&=O(\log{n})
\end{aligned}
\]
4. C++求解
4.1. 直接公式法
在 3 中, 我们得出了以下公式 ( \(\pm\) 的确定取决于 \(h\) 的奇偶):
\]
为了简便运算, 我们可以将上式改为:
h&=-2+\frac{\ln{\big[~\sqrt{5}(n+1)+\sqrt{5(n+1)^2 \pm 4}~\big]}}{\ln{(\sqrt{5}+1)}-\ln{2}}-\frac{\ln{2}}{\ln{(\sqrt{5}+1)}-\ln{2}} \\
&<-3.44042+\frac{\ln{\big[~\sqrt{5}(n+1)+\sqrt{5(n+1)^2 \pm 4}~\big]}}{0.48121}
\end{aligned}
\]
将上式写为程序, 函数名为 heightOfAVL_formula
, 参数 numOfNode
传入 node 数量, 返回能够构成的 AVL tree 的最大高度:
#include <cmath>
constexpr double sqrt5 = 2.23606797749979;
constexpr double down512 = 0.4812118250596034;
constexpr double left2L2 = -3.440420090412556;
inline size_t heightOfAVL_formula(size_t numOfNode)
{
numOfNode++;
size_t h = left2L2 + log(sqrt5 * (numOfNode + 1) + sqrt(5 * numOfNode * numOfNode - 4.0)) / down512;
if (h & 1) {
return h;
} else {
return left2L2 + log(sqrt5 * numOfNode + sqrt(5 * numOfNode * numOfNode + 4.0)) / down512;
}
}
理论上说, 当 node 数量极大, 公式法能够提供良好的性能.
尽管当 \(h\) 为偶数, 需要多进行一次计算,
但是对于任意 node 数量, 只需平均计算 1.5 次.
然而计算本身的效率较低, 同时运算中浮点数产生的误差可能难以估计 (事实上对 47000 个 node 已经给出了错误解).
4.2. 利用 Fibonacci sequence 间接求解
根据 2 中证明的 \(N_{h}=Fibonacci_{(h+2)}-1\) ,
函数 heightOfAVL_iteration
利用迭代更优雅地求解了 AVL tree 的高度.
inline size_t heightOfAVL_iteration(size_t numOfNode)
{
if (numOfNode == 0) return 0;
size_t arr[2] = { 2,3 };
size_t height = 4;
while (true) {
if (arr[0] - 1 <= numOfNode && arr[1] - 1 > numOfNode) { return height - 3; }
arr[0] = arr[1] + arr[0];
std::swap(arr[0], arr[1]);
height++;
}
}
上述方法效率更高, 而且无需担心运算中的精度损失.
5. 鸣谢
lrf8182
Reference | Data Structures, Algoritms, and Applications in C++, Sartaj Sahni
AVL tree 高度上下界推导的更多相关文章
- AVL树 高度平衡的二叉查找树
1.What is AVL tree? AVL tree 是一种特殊的二叉查找树,,首先我们要在树中引入平衡因子balance,表示结点右子树的高度减去左子树的高度差(右-左),对于一棵AVL树要么它 ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- 04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- 平衡二叉树(AVL Tree)
在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树. (由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过 ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- PAT-1066(Root of AVL Tree)Java语言实现
Root of AVL Tree PAT-1066 这是关于AVL即二叉平衡查找树的基本操作,包括旋转和插入 这里的数据结构主要在原来的基础上加上节点的高度信息. import java.util.* ...
- 转载:平衡二叉树(AVL Tree)
平衡二叉树(AVL Tree) 转载至:https://www.cnblogs.com/jielongAI/p/9565776.html 在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简 ...
- AVL Tree (1) - Definition, find and Rotation
1. 定义 (15-1) [AVL tree]: 一棵空二叉树是 AVL tree; 若 T 是一棵非空二叉树, 则 T 满足以下两个条件时, T 是一棵 AVL tree: T_LeftSubtre ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
随机推荐
- c# 怎样能写个sql的解析器
c# 怎样能写个sql的解析器 本示例主要是讲明sql解析的原理,真实的源代码下查看 sql解析器源代码 详细示例DEMO 请查看demo代码 前言 阅读本文需要有一定正则表达式基础 正则表达式基础教 ...
- 实战模拟│JWT 登录认证
目录 Token 认证流程 Token 认证优点 JWT 结构 JWT 基本使用 实战:使用 JWT 登录认证 Token 认证流程 作为目前最流行的跨域认证解决方案,JWT(JSON Web Tok ...
- 『现学现忘』Git后悔药 — 29、版本回退git reset --mixed命令说明
git reset --mixed commit-id命令:回退到指定版本.(mixed:混合的,即:中等回退.) 该命令不仅修改了分支中HEAD指针的位置,还将暂存区中数据也回退到了指定版本. 但是 ...
- RS485 MODBUS RTU通信协议
1.RS485接口标准 RS485由RS232和RS422发展而来,弥补了抗干扰能力差.通信距离短.速率低的缺点,增加了多点.双向通信能力,即允许多个发送器连接在同一条主线上,同时增加了发送器的驱动能 ...
- 匿名对象作为方法的参数和返回值与Random概念和基本使用
应用场景 1. 创建匿名对象直接调用方法,没有变量名. new Scanner(System.in).nextInt(); 2. 一旦调用两次方法,就是创建了两个对象,造成浪费,请看如下代码. new ...
- 初次使用 eolink 感受
最近总有前端小伙伴来找我抱怨,"后端接口出来太晚,影响我的任务进度"."后端接口改了也不通知我一下,到冒烟测试的时候报一堆的错".我拉后端小伙伴了解情况,结果问 ...
- Centos7较为彻底的删除mysql
Centos7下较为彻底的删除mysql(root 身份操作) 删除mysql安装包 1. yum检查 yum list installed | grep mysql 安装则直接删除 示例:yum r ...
- MPI学习笔记(二):矩阵相乘的两种实现方法
mpi矩阵乘法(C=αAB+βC) 最近领导让把之前安装的软件lapack.blas里的dgemm运算提取出来独立作为一套程序,然后把这段程序改为并行的,并测试一下进程规模扩展到128时的并行效率. ...
- JS for in / foreach / for of 超简单对照解释
for in 可以遍历数组/对象/字符串/enumerable对象,得到的是索引,遍历对象时可以写这样 obj[index] 代表对象当前的属性foreach 只能遍历数组,不能遍历字符串.对象for ...
- python:GUI图形化数据库巡检工具
问题描述:时间过得真快,一眨眼又一个月过去,2022又过去大半,7月的尾巴,终于稍微做出来点 东西,本人也不是开发,也是在不断学习的一枚小白.这次使用tkinter制作了一个mysql的巡检工具,使用 ...