You are given a sequence of numbers a1, a2, ..., an, and a number m.

Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

Examples

Input
3 5
1 2 3
Output
YES
Input
1 6
5
Output
NO
Input
4 6
3 1 1 3
Output
YES
Input
6 6
5 5 5 5 5 5
Output
YES

Note

In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.

In the third sample test you need to choose two numbers 3 on the ends.

In the fourth sample test you can take the whole subsequen

OJ-ID:
CodeForce 577B

author:
Caution_X

date of submission:
20191019

tags:
dp

description modelling:
给一个序列,找一个子序列使之mod m =0

major steps to solve it:
dp[i]:表示取模后得到了i
1.遍历序列,对每一个元素更新dp,判断能否得到dp[0]

AC code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[],dp[],tmp[];
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
for(int i=;i<n;i++) {
scanf("%lld",&a[i]);
}
for(int i=;i<n;i++) {
if(dp[]) break;
for(int j=;j<=m-;j++) {
if(dp[j]) {
tmp[(j+a[i])%m]=;
}
}
tmp[a[i]%m]=;
for(int j=;j<=m-;j++) {
dp[j]=tmp[j];
}
}
if(dp[]) printf("YES\n");
else printf("NO\n");
return ;
}

CodeForce 577B Modulo Sum的更多相关文章

  1. Codeforces 577B Modulo Sum

    http://codeforces.com/problemset/problem/577/B 题意:有n个数,求有无一个子序列满足和是m的倍数 思路:用模下的背包做,发现n是十的六次方级别,但是有个神 ...

  2. Codeforces 577B Modulo Sum:数学 结论【选数之和为m的倍数】

    题目链接:http://codeforces.com/problemset/problem/448/C 题意: 给你n个数字,给定m. 问你是否能从中选出若干个数字,使得这些数字之和为m的倍数. 题解 ...

  3. codeforces 577B. Modulo Sum 解题报告

    题目链接:http://codeforces.com/problemset/problem/577/B 题目意思:就是给出 n 个数(a1, a2, ..., an) 和 m,问能不能从这 n 个数中 ...

  4. CF 577B Modulo Sum

    题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...

  5. codeforces 577B B. Modulo Sum(水题)

    题目链接: B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  7. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  8. Modulo Sum(背包 + STL)

     Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  9. Codeforces Round #319 (Div. 2) B. Modulo Sum 抽屉原理+01背包

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. Linux vi文档操作

    使用操作 a 在光标后插入    A 插入行末   i 在光标前插入   I 插入行首 o 向下切换一行 O 向上开一行 dd 删除一整行 x 删除光标后一个字符   X 删除光标前一个字符 shif ...

  2. SQL server已经设置为单用户模式,还是无法做分离、属性设置等操作

    https://www.cnblogs.com/xingyunqiu/p/10336938.html SQL server已经设置为单用户模式,Sql server还原失败数据库正在使用,无法获得对数 ...

  3. Linux问题记录——主机名变成了bogon

    Linux问题记录——主机名变成了bogon 摘要:本文主要记录了主机名变成bogon的原因以及解决办法. 问题重现 主机名在一次登录后,变成了bogon,此后每次登录Linux系统时都是bogon. ...

  4. 用ggplot包画一个简单饼图

    首先用library函数加载ggplot2包 library(ggplot2) library(dplyr) library(tidyr) library(splines) 接下来,进行数据准备: d ...

  5. vue学习笔记(三): 启动说明

    1.启动页面:index.html <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...

  6. android.os.Parcel.readByteArray NullPointerException

    报错信息: E/AndroidRuntime( 1626): java.lang.NullPointerException E/AndroidRuntime( 1626): at android.os ...

  7. git在idea中的冲突解决(非常重要)

    1.什么是冲突 冲突是指当你在提交或者更新代码时被合并的文件与当前文件不一致.读起来有点绕,结合下面的案例理解. 从上面对冲突的定义来看,冲突时发生在同一个文件上的. 2.生产上冲突的场景 常见冲突的 ...

  8. 第十章 Centos7-系统进程管理

    第十章  Centos7-系统进程管理 本节所讲内容: 10.1  进程概述和ps查看进程工具 10.2  uptime查看系统负载-top动态管理进程 10.3  前后台进程切换- nice进程优先 ...

  9. Day_03

    1.指针基本操作 package main import "fmt" func main() { var a int //每个变量有2层含义:变量的内存,变量的地址 fmt.Pri ...

  10. SpringBoot+Mybatis多模块项目搭建教程

    一.前言 框架为SpringBoot+Mybatis,本篇主要记录了在IDEA中搭建SpringBoot多模块项目的过程. 1.开发工具及系统环境 IDE:IntelliJ IDEA 2018.2 系 ...