You are given a sequence of numbers a1, a2, ..., an, and a number m.

Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

Examples

Input
3 5
1 2 3
Output
YES
Input
1 6
5
Output
NO
Input
4 6
3 1 1 3
Output
YES
Input
6 6
5 5 5 5 5 5
Output
YES

Note

In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.

In the third sample test you need to choose two numbers 3 on the ends.

In the fourth sample test you can take the whole subsequen

OJ-ID:
CodeForce 577B

author:
Caution_X

date of submission:
20191019

tags:
dp

description modelling:
给一个序列,找一个子序列使之mod m =0

major steps to solve it:
dp[i]:表示取模后得到了i
1.遍历序列,对每一个元素更新dp,判断能否得到dp[0]

AC code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[],dp[],tmp[];
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
for(int i=;i<n;i++) {
scanf("%lld",&a[i]);
}
for(int i=;i<n;i++) {
if(dp[]) break;
for(int j=;j<=m-;j++) {
if(dp[j]) {
tmp[(j+a[i])%m]=;
}
}
tmp[a[i]%m]=;
for(int j=;j<=m-;j++) {
dp[j]=tmp[j];
}
}
if(dp[]) printf("YES\n");
else printf("NO\n");
return ;
}

CodeForce 577B Modulo Sum的更多相关文章

  1. Codeforces 577B Modulo Sum

    http://codeforces.com/problemset/problem/577/B 题意:有n个数,求有无一个子序列满足和是m的倍数 思路:用模下的背包做,发现n是十的六次方级别,但是有个神 ...

  2. Codeforces 577B Modulo Sum:数学 结论【选数之和为m的倍数】

    题目链接:http://codeforces.com/problemset/problem/448/C 题意: 给你n个数字,给定m. 问你是否能从中选出若干个数字,使得这些数字之和为m的倍数. 题解 ...

  3. codeforces 577B. Modulo Sum 解题报告

    题目链接:http://codeforces.com/problemset/problem/577/B 题目意思:就是给出 n 个数(a1, a2, ..., an) 和 m,问能不能从这 n 个数中 ...

  4. CF 577B Modulo Sum

    题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...

  5. codeforces 577B B. Modulo Sum(水题)

    题目链接: B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  7. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  8. Modulo Sum(背包 + STL)

     Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  9. Codeforces Round #319 (Div. 2) B. Modulo Sum 抽屉原理+01背包

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. 解决 canvas 下载含图片的画布时的报错

    Uncaught DOMException: Failed to execute 'toDataURL' on 'HTMLCanvasElement': Tainted canvases may no ...

  2. CENTOS 7 升级内核版本(附带升级脚本)

    写在前面的话 对于系统而言,除非是那种安全性要求非常高的公司或者经常会有第三方安全机构对其漏洞扫描的才容易涉及到系统的内核升级,比如之前呆过一个公司,因为需要做三级等保的原因,就会涉及到系统扫描,这时 ...

  3. solidity定长数组和动态数组

    固定长度的数组 固定长度数组声明 直接在定义数组的时候声明固定长度数组的值: uint[5] fixedArr = [1,2,3,4,5]; 可通过数组的length属性来获得数组的长度,进而进行遍历 ...

  4. Wpf Backgroundworker

    <Window x:Class="WpfApp53.MainWindow" xmlns="http://schemas.microsoft.com/winfx/20 ...

  5. 浅谈Java面向对象思想

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  6. 网上售卖几百一月的微信机器,Python几十行代码就能搞定

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 故事胶片 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...

  7. Wireshark分析实战:某达速递登录帐号密码提取

    - 准备工作 首先,备好Wireshark,打开,在外网网卡上抓包. 其次,用浏览器访问http://www.yundaex.com/cn/index.php,并在手机上下载安装其APP,找到登录页面 ...

  8. ucoreOS_lab8 实验报告

    所有的实验报告将会在 Github 同步更新,更多内容请移步至Github:https://github.com/AngelKitty/review_the_national_post-graduat ...

  9. 【JavaWeb】JSON基础

    JSON JavaScript Object Notation(JavaScript 对象表示法): JSON是轻量级的文本数据交换格式: JSON独立于语言,具有自我描述性,更易理解: JSON语法 ...

  10. 浅入浅出 Go 语言接口的原理

    浅入浅出 Go 语言接口的原理 接口是 Go 语言的重要组成部分,它在 Go 语言中通过一组方法指定了一个对象的行为,接口 interface 的引入能够让我们在 Go 语言更好地组织并写出易于测试的 ...