spark 各个版本的application 调度算法还是有这明显的不同之处的。从spark1.3.0 到 spark 1.6.1、spark2.0 到 现在最新的spark 3.0 ,调度算法有了一定的修改。下面大家一起学习一下,最新的spark 版本spark-3.0的Application 调度机制。

private def startExecutorsOnWorkers(): Unit = {
// Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
// in the queue, then the second app, etc.
for (app <- waitingApps) {
//如果在 spark-submmit 脚本中,指定了每个executor 多少个 CPU core,
// 则每个Executor 分配该个数的 core,
// 否则 默认每个executor 只分配 1 个 CPU core
val coresPerExecutor = app.desc.coresPerExecutor.getOrElse(1)
// If the cores left is less than the coresPerExecutor,the cores left will not be allocated
// 当前 APP 还需要分配的 core 数 不能 小于 单个 executor 启动 的 CPU core 数
if (app.coresLeft >= coresPerExecutor) {
// Filter out workers that don't have enough resources to launch an executo/*ku*/r
// 过滤出 状态 为 ALIVE,并且还能 发布 Executor 的 worker
// 按照剩余的 CPU core 数 倒序
val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
.filter(canLaunchExecutor(_, app.desc))
.sortBy(_.coresFree).reverse
if (waitingApps.length == 1 && usableWorkers.isEmpty) {
logWarning(s"App ${app.id} requires more resource than any of Workers could have.")
}
    // TODO:  默认采用 spreadOutApps  调度算法, 将 application需要的 executor资源 分派到  多个 worker 上去
      val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)

      // Now that we've decided how many cores to allocate on each worker, let's allocate them
for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
allocateWorkerResourceToExecutors(
app, assignedCores(pos), app.desc.coresPerExecutor, usableWorkers(pos))
}
}
}
}
判断一个 worker 是否可以发布 executor
private def canLaunchExecutor(worker: WorkerInfo, desc: ApplicationDescription): Boolean = {
canLaunch(
worker,
desc.memoryPerExecutorMB,
desc.coresPerExecutor.getOrElse(1),
desc.resourceReqsPerExecutor)
}
让我们看一看里面的 canlaunch 方法
private def canLaunch(
worker: WorkerInfo,
memoryReq: Int,
coresReq: Int,
resourceRequirements: Seq[ResourceRequirement])
: Boolean = {
// worker 上 空闲的 内存值 要 大于等于 请求的 内存值
val enoughMem = worker.memoryFree >= memoryReq
// worker 上 空闲的 core 数 要 大于等于 请求的 core数
val enoughCores = worker.coresFree >= coresReq
// worker 是否满足 executor 请求的资源
val enoughResources = ResourceUtils.resourcesMeetRequirements(
worker.resourcesAmountFree, resourceRequirements)
enoughMem && enoughCores && enoughResources
} 回到上面的 scheduleExecutorsOnWorkers
private def scheduleExecutorsOnWorkers(
app: ApplicationInfo,
usableWorkers: Array[WorkerInfo],
spreadOutApps: Boolean): Array[Int] = {
val coresPerExecutor = app.desc.coresPerExecutor
val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
// 默认情况下 是 开启 oneExecutorPerWorker 机制的,也就是默认是在 一个 worker 上 只启动 一个 executor的
// 如果在spark -submit 脚本中设置了coresPerExecutor , 在worker资源充足的时候,则 会在每个worker 上,启动多个executor
val oneExecutorPerWorker = coresPerExecutor.isEmpty
val memoryPerExecutor = app.desc.memoryPerExecutorMB
val resourceReqsPerExecutor = app.desc.resourceReqsPerExecutor
val numUsable = usableWorkers.length
val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)
// 判断  Worker节点是否能够启动Executor
def canLaunchExecutorForApp(pos: Int): Boolean = { val keepScheduling = coresToAssign >= minCoresPerExecutor
val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor
val assignedExecutorNum = assignedExecutors(pos) // If we allow multiple executors per worker, then we can always launch new executors.
// Otherwise, if there is already an executor on this worker, just give it more cores. // 如果spark -submit 脚本中设置了coresPerExecutor值,
// 或者当前 这个worker 还没有为这个 application 分配 过 executor ,
val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutorNum == 0
// TODO: 可以启动新的 Executor
if (launchingNewExecutor) {
val assignedMemory = assignedExecutorNum * memoryPerExecutor
val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor
val assignedResources = resourceReqsPerExecutor.map {
req => req.resourceName -> req.amount * assignedExecutorNum
}.toMap
val resourcesFree = usableWorkers(pos).resourcesAmountFree.map {
case (rName, free) => rName -> (free - assignedResources.getOrElse(rName, 0))
}
val enoughResources = ResourceUtils.resourcesMeetRequirements(
resourcesFree, resourceReqsPerExecutor)
val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit
keepScheduling && enoughCores && enoughMemory && enoughResources && underLimit
} else {
// We're adding cores to an existing executor, so no need
// to check memory and executor limits
// TODO: 不满足启动新的 Executor条件,则 在 老的 Executor 上 追加 core 数
keepScheduling && enoughCores
}
} // Keep launching executors until no more workers can accommodate any
// more executors, or if we have reached this application's limits var freeWorkers = (0 until numUsable).filter(canLaunchExecutorForApp)
while (freeWorkers.nonEmpty) {
freeWorkers.foreach { pos =>
var keepScheduling = true
while (keepScheduling && canLaunchExecutorForApp(pos)) {
coresToAssign -= minCoresPerExecutor
assignedCores(pos) += minCoresPerExecutor // If we are launching one executor per worker, then every iteration assigns 1 core
// to the executor. Otherwise, every iteration assigns cores to a new executor.
if (oneExecutorPerWorker) {
//TODO: 如果该Worker节点不能启动新的 Executor,则每次在老的executor 上 分配 minCoresPerExecutor 个 CPU core(此时该值默认 为 1 )
assignedExecutors(pos) = 1
} else {
//TODO: 如果该Worker节点可以启动新的 Executor,则每次在新的executor 上 分配 minCoresPerExecutor 个 CPU core(此时该值为 spark-submit脚本配置的 coresPerExecutor 值)
assignedExecutors(pos) += 1
} // Spreading out an application means spreading out its executors across as
// many workers as possible. If we are not spreading out, then we should keep
// scheduling executors on this worker until we use all of its resources.
// Otherwise, just move on to the next worker.
if (spreadOutApps) {
// TODO: 这里传入 keepScheduling = false , 就是每次 worker上只分配 一次 core ,然后 到 下一个 worker 上 再去 分配 core,直到 worker
// TODO: 完成一次遍历
keepScheduling = false
}
}
}
freeWorkers = freeWorkers.filter(canLaunchExecutorForApp)
}
// 返回每个Worker节点分配的CPU核数
assignedCores
} 再来分析 allocateWorkerResourceToExecutors
private def allocateWorkerResourceToExecutors(
app: ApplicationInfo,
assignedCores: Int,
coresPerExecutor: Option[Int],
worker: WorkerInfo): Unit = {
// If the number of cores per executor is specified, we divide the cores assigned
// to this worker evenly among the executors with no remainder.
// Otherwise, we launch a single executor that grabs all the assignedCores on this worker.
val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)
val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
for (i <- 1 to numExecutors) {
val allocated = worker.acquireResources(app.desc.resourceReqsPerExecutor)
// TODO : 当前 这个 application 追加 一次 Executor
val exec = app.addExecutor(worker, coresToAssign, allocated)
//TODO: 给worker 线程 发送 launchExecutor 命令
launchExecutor(worker, exec)
app.state = ApplicationState.RUNNING
}
}
ok,至此,spark最新版本 spark-3.0的Application 调度算法分析完毕!!!

spark-3.0 application 调度算法解析的更多相关文章

  1. Spark集群任务提交流程----2.1.0源码解析

    Spark的应用程序是通过spark-submit提交到Spark集群上运行的,那么spark-submit到底提交了什么,集群是怎样调度运行的,下面一一详解. 0. spark-submit提交任务 ...

  2. Apache Spark 3.0 预览版正式发布,多项重大功能发布

    2019年11月08日 数砖的 Xingbo Jiang 大佬给社区发了一封邮件,宣布 Apache Spark 3.0 预览版正式发布,这个版本主要是为了对即将发布的 Apache Spark 3. ...

  3. [Spark] Spark 3.0 Accelerator Aware Scheduling - GPU

    Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-p ...

  4. solr&lucene3.6.0源码解析(四)

    本文要描述的是solr的查询插件,该查询插件目的用于生成Lucene的查询Query,类似于查询条件表达式,与solr查询插件相关UML类图如下: 如果我们强行将上面的类图纳入某种设计模式语言的话,本 ...

  5. solr&lucene3.6.0源码解析(三)

    solr索引操作(包括新增 更新 删除 提交 合并等)相关UML图如下 从上面的类图我们可以发现,其中体现了工厂方法模式及责任链模式的运用 UpdateRequestProcessor相当于责任链模式 ...

  6. Spark 2.0

    Apache Spark 2.0: Faster, Easier, and Smarter http://blog.madhukaraphatak.com/categories/spark-two/ ...

  7. Heritrix 3.1.0 源码解析(三十七)

    今天有兴趣重新看了一下heritrix3.1.0系统里面的线程池源码,heritrix系统没有采用java的cocurrency包里面的并发框架,而是采用了线程组ThreadGroup类来实现线程池的 ...

  8. Cocos2d-x 3.0 使用TinyXml 解析XML文件

    在cocos2d-x 3.0中Xml解析已经不用自己找库了,已经为我们集成好了. text.xml <!--?xml version ="1.0" encoding =&qu ...

  9. Spark 1.0.0 横空出世 Spark on Yarn 部署(Hadoop 2.4)

    就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Progr ...

随机推荐

  1. Linux中shell基础、重定向、管道符、环境变量

    1.什么是shell Shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口(命令解释器).它接收用户输入的命令并把它送入内核去执行.起着协调用户与系统的一致性和在用户与系统之间进行交互的 ...

  2. JavaScript的定时器是如何工作的

    理解JavaScript定时器工作原理对于学习JavaScript非常重要.因为JavaScript是单线程运行的,定时器使用场合少,不是很直观.下面通过三个函数来学习JavaScript如何定义,操 ...

  3. mac 下面 vim 编辑器 开启语法高亮

    cp /usr/share/vim/vimrc ~/.vimrc 拷贝默认的配置文件 vim ~/.vimrc 编辑该文件 在文件的最后加入 syntax on 保存退出即可

  4. Django ORM-objects-QuerySet

    Django ORM ORM执行查看原生SQL的两种方法 1.在setting中配置 LOGGING = { 'version': 1, 'disable_existing_loggers': Fal ...

  5. 2019-2020-1 20199304《Linux内核原理与分析》第一周作业

    通过对Linux基础课程的学习,我对Linux的背景以及和Windows的区别有了了解, Linux 平台:大都为开源自由软件,用户可以修改定制和再发布,由于基本免费没有资金支持,部分软件质量和体验欠 ...

  6. CSS自定义默认样式

    html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, ...

  7. luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  8. luogu CF16E Fish

    题目描述 有n条鱼,编号从1到n,住在湖里.每天有一对鱼相遇, 彼此相遇的概率是一样的.如果两条标号为i和j的鱼见面,第一只吃了第二只的概率为a{i,j},第二只会吃了第一只的概率为a{j,i}=1- ...

  9. tensorflow sequence_loss

    sequence_loss是nlp算法中非常重要的一个函数.rnn,lstm,attention都要用到这个函数.看下面代码: # coding: utf-8 import numpy as np i ...

  10. Python3 函数进阶3

    目录 匿名函数 定义匿名函数 匿名函数的使用 内置函数 匿名函数 定义匿名函数 我们之前定义的函数都是有名函数, 我们可以通过函数名来调用 匿名函数顾名思义就是一种没有绑定函数名的函数, 使用一次既被 ...