拓展阅读:Redis闲谈(1):构建知识图谱

Redis专题(2):Redis数据结构底层探秘

近来,分布式的问题被广泛提及,比如分布式事务、分布式框架、ZooKeeper、SpringCloud等等。本文先回顾锁的概念,再介绍分布式锁,以及如何用Redis来实现分布式锁。

一、锁的基本了解

首先,回顾一下我们工作学习中的锁的概念。

为什么要先讲锁再讲分布式锁呢?

我们都清楚,锁的作用是要解决多线程对共享资源的访问而产生的线程安全问题,而在平时生活中用到锁的情况其实并不多,可能有些朋友对锁的概念和一些基本的使用不是很清楚,所以我们先看锁,再深入介绍分布式锁。

通过一个卖票的小案例来看,比如大家去抢dota2 ti9门票,如果不加锁的话会出现什么问题?此时代码如下:

package Thread;

import java.util.concurrent.TimeUnit;

public class Ticket {

    /**
* 初始库存量
* */
Integer ticketNum = ; public void reduce(int num){
//判断库存是否够用
if((ticketNum - num) >= ){
try {
TimeUnit.MILLISECONDS.sleep();
}catch (InterruptedException e){
e.printStackTrace();
}
ticketNum -= num;
System.out.println(Thread.currentThread().getName() + "成功卖出"
+ num + "张,剩余" + ticketNum + "张票");
}else {
System.err.println(Thread.currentThread().getName() + "没有卖出"
+ num + "张,剩余" + ticketNum + "张票");
}
} public static void main(String[] args) throws InterruptedException{
Ticket ticket = new Ticket();
//开启10个线程进行抢票,按理说应该有两个人抢不到票
for(int i=;i<;i++){
new Thread(() -> ticket.reduce(),"用户" + (i + )).start();
}
Thread.sleep(1000L);
} }

代码分析:这里有8张ti9门票,设置了10个线程(也就是模拟10个人)去并发抢票,如果抢成功了显示成功,抢失败的话显示失败。按理说应该有8个人抢成功了,2个人抢失败,下面来看运行结果:

我们发现运行结果和预期的情况不一致,居然10个人都买到了票,也就是说出现了线程安全的问题,那么是什么原因导致的呢?

原因就是多个线程之间产生了时间差

如图所示,只剩一张票了,但是两个线程都读到的票余量是1,也就是说线程B还没有等到线程A改库存就已经抢票成功了。

怎么解决呢?想必大家都知道,加个synchronized关键字就可以了,在一个线程进行reduce方法的时候,其他线程则阻塞在等待队列中,这样就不会发生多个线程对共享变量的竞争问题。

举个例子

比如我们去健身房健身,如果好多人同时用一台机器,同时在一台跑步机上跑步,就会发生很大的问题,大家会打得不可开交。如果我们加一把锁在健身房门口,只有拿到锁的钥匙的人才可以进去锻炼,其他人在门外等候,这样就可以避免大家对健身器材的竞争。代码如下:

public  synchronized void reduce(int num){
//判断库存是否够用
if((ticketNum - num) >= ){
try {
TimeUnit.MILLISECONDS.sleep();
}catch (InterruptedException e){
e.printStackTrace();
}
ticketNum -= num;
System.out.println(Thread.currentThread().getName() + "成功卖出"
+ num + "张,剩余" + ticketNum + "张票");
}else {
System.err.println(Thread.currentThread().getName() + "没有卖出"
+ num + "张,剩余" + ticketNum + "张票");
}
}

运行结果:

果不其然,结果有两个人没有成功抢到票,看来我们的目地达成了。

二、锁的性能优化

2.1 缩短锁的持有时间

事实上,按照我们对日常生活的理解,不可能整个健身房只有一个人在运动。所以我们只需要对某一台机器加锁就可以了,比如一个人在跑步,另一个人可以去做其他的运动。

对于票务系统来说,我们只需要对库存的修改操作的代码加锁就可以了,别的代码还是可以并行进行,这样会大大减少锁的持有时间,代码修改如下:

public void reduceByLock(int num){
boolean flag = false; synchronized (ticketNum){
if((ticketNum - num) >= ){
ticketNum -= num;
flag = true;
}
}
if(flag){
System.out.println(Thread.currentThread().getName() + "成功卖出"
+ num + "张,剩余" + ticketNum + "张票");
}
else {
System.err.println(Thread.currentThread().getName() + "没有卖出"
+ num + "张,剩余" + ticketNum + "张票");
}
if(ticketNum == ){
System.out.println("耗时" + (System.currentTimeMillis() - startTime) + "毫秒");
}
}

这样做的目的是充分利用cpu的资源,提高代码的执行效率

这里我们对两种方式的时间做个打印:

public synchronized void reduce(int num){
//判断库存是否够用
if((ticketNum - num) >= ){
try {
TimeUnit.MILLISECONDS.sleep();
}catch (InterruptedException e){
e.printStackTrace();
}
ticketNum -= num;
if(ticketNum == ){
System.out.println("耗时" + (System.currentTimeMillis() - startTime) + "毫秒");
}
System.out.println(Thread.currentThread().getName() + "成功卖出"
+ num + "张,剩余" + ticketNum + "张票");
}else {
System.err.println(Thread.currentThread().getName() + "没有卖出"
+ num + "张,剩余" + ticketNum + "张票");
}
}

果然,只对部分代码加锁会大大提供代码的执行效率。

所以,在解决了线程安全的问题后,我们还要考虑到加锁之后的代码执行效率问题

2.2 减少锁的粒度

举个例子,有两场电影,分别是最近刚上映的魔童哪吒和蜘蛛侠,我们模拟一个支付购买的过程,让方法等待,加了一个CountDownLatch的await方法,运行结果如下:

package Thread;

import java.util.concurrent.CountDownLatch;

public class Movie {
private final CountDownLatch latch = new CountDownLatch();
//魔童哪吒
private Integer babyTickets = ; //蜘蛛侠
private Integer spiderTickets = ; public synchronized void showBabyTickets() throws InterruptedException{
System.out.println("魔童哪吒的剩余票数为:" + babyTickets);
//购买
latch.await();
} public synchronized void showSpiderTickets() throws InterruptedException{
System.out.println("蜘蛛侠的剩余票数为:" + spiderTickets);
//购买
} public static void main(String[] args) {
Movie movie = new Movie();
new Thread(() -> {
try {
movie.showBabyTickets();
}catch (InterruptedException e){
e.printStackTrace();
}
},"用户A").start(); new Thread(() -> {
try {
movie.showSpiderTickets();
}catch (InterruptedException e){
e.printStackTrace();
}
},"用户B").start();
} }

执行结果:

魔童哪吒的剩余票数为:

我们发现买哪吒票的时候阻塞会影响蜘蛛侠票的购买,而实际上,这两场电影之间是相互独立的,所以我们需要减少锁的粒度,将movie整个对象的锁变为两个全局变量的锁,修改代码如下:

public void showBabyTickets() throws InterruptedException{
synchronized (babyTickets) {
System.out.println("魔童哪吒的剩余票数为:" + babyTickets);
//购买
latch.await();
}
} public void showSpiderTickets() throws InterruptedException{
synchronized (spiderTickets) {
System.out.println("蜘蛛侠的剩余票数为:" + spiderTickets);
//购买
}
}

执行结果:

魔童哪吒的剩余票数为:
蜘蛛侠的剩余票数为:

现在两场电影的购票不会互相影响了,这就是第二个优化锁的方式:减少锁的粒度。顺便提一句,Java并发包里的ConcurrentHashMap就是把一把大锁变成了16把小锁,通过分段锁的方式达到高效的并发安全。

2.3 锁分离

锁分离就是常说的读写分离,我们把锁分成读锁和写锁,读的锁不需要阻塞,而写的锁要考虑并发问题。

三、锁的种类

  • 公平锁: ReentrantLock
  • 非公平锁: Synchronized、ReentrantLock、cas
  • 悲观锁: Synchronized
  • 乐观锁:cas
  • 独享锁:Synchronized、ReentrantLock
  • 共享锁:Semaphore

这里就不一一讲述每一种锁的概念了,大家可以自己学习,锁还可以按照偏向锁、轻量级锁、重量级锁来分类。

四、Redis分布式锁

了解了锁的基本概念和锁的优化后,重点介绍分布式锁的概念。

上图所示是我们搭建的分布式环境,有三个购票项目,对应一个库存,每一个系统会有多个线程,和上文一样,对库存的修改操作加上锁,能不能保证这6个线程的线程安全呢?

当然是不能的,因为每一个购票系统都有各自的JVM进程,互相独立,所以加synchronized只能保证一个系统的线程安全,并不能保证分布式的线程安全。

所以需要对于三个系统都是公共的一个中间件来解决这个问题。

这里我们选择Redis来作为分布式锁,多个系统在Redis中set同一个key,只有key不存在的时候,才能设置成功,并且该key会对应其中一个系统的唯一标识,当该系统访问资源结束后,将key删除,则达到了释放锁的目的。

4.1 分布式锁需要注意哪些点

1)互斥性

在任意时刻只有一个客户端可以获取锁。

这个很容易理解,所有的系统中只能有一个系统持有锁。

2)防死锁

假如一个客户端在持有锁的时候崩溃了,没有释放锁,那么别的客户端无法获得锁,则会造成死锁,所以要保证客户端一定会释放锁。

Redis中我们可以设置锁的过期时间来保证不会发生死锁。

3)持锁人解锁

解铃还须系铃人,加锁和解锁必须是同一个客户端,客户端A的线程加的锁必须是客户端A的线程来解锁,客户端不能解开别的客户端的锁。

4)可重入

当一个客户端获取对象锁之后,这个客户端可以再次获取这个对象上的锁。

4.2 Redis分布式锁流程

Redis分布式锁的具体流程:

1)首先利用Redis缓存的性质在Redis中设置一个key-value形式的键值对,key就是锁的名称,然后客户端的多个线程去竞争锁,竞争成功的话将value设为客户端的唯一标识。

2)竞争到锁的客户端要做两件事:

  • 设置锁的有效时间 目的是防死锁 (非常关键)

需要根据业务需要,不断的压力测试来决定有效期的长短。

  • 分配客户端的唯一标识,目的是保证持锁人解锁(非常重要)

所以这里的value就设置成唯一标识(比如uuid)。

3)访问共享资源

4)释放锁,释放锁有两种方式,第一种是有效期结束后自动释放锁,第二种是先根据唯一标识判断自己是否有释放锁的权限,如果标识正确则释放锁

4.3 加锁和解锁

4.3.1 加锁

1)setnx命令加锁

set if not exists 我们会用到Redis的命令setnx,setnx的含义就是只有锁不存在的情况下才会设置成功。

2)设置锁的有效时间,防止死锁 expire

加锁需要两步操作,思考一下会有什么问题吗?

假如我们加锁完之后客户端突然挂了呢?那么这个锁就会成为一个没有有效期的锁,接着就可能发生死锁。虽然这种情况发生的概率很小,但是一旦出现问题会很严重,所以我们也要把这两步合为一步。

幸运的是,Redis3.0已经把这两个指令合在一起成为一个新的指令。

来看jedis的官方文档中的源码:

    public String set(String key, String value, String nxxx, String expx, long time) {
this.checkIsInMultiOrPipeline();
this.client.set(key, value, nxxx, expx, time);
return this.client.getStatusCodeReply();
}

这就是我们想要的!

4.3.2 解锁

  • 检查是否自己持有锁(判断唯一标识);
  • 删除锁。

解锁也是两步,同样也要保证解锁的原子性,把两步合为一步。

这就无法借助于Redis了,只能依靠Lua脚本来实现。

if Redis.call("get",key==argv[])then
return Redis.call("del",key)
else return end

这就是一段判断是否自己持有锁并释放锁的Lua脚本。

为什么Lua脚本是原子性呢?因为Lua脚本是jedis用eval()函数执行的,如果执行则会全部执行完成。

五、Redis分布式锁代码实现

public class RedisDistributedLock implements Lock {

    //上下文,保存当前锁的持有人id
private ThreadLocal<String> lockContext = new ThreadLocal<String>(); //默认锁的超时时间
private long time = ; //可重入性
private Thread ownerThread; public RedisDistributedLock() {
} public void lock() {
while (!tryLock()){
try {
Thread.sleep();
}catch (InterruptedException e){
e.printStackTrace();
}
}
} public boolean tryLock() {
return tryLock(time,TimeUnit.MILLISECONDS);
} public boolean tryLock(long time, TimeUnit unit){
String id = UUID.randomUUID().toString(); //每一个锁的持有人都分配一个唯一的id
Thread t = Thread.currentThread();
Jedis jedis = new Jedis("127.0.0.1",);
//只有锁不存在的时候加锁并设置锁的有效时间
if("OK".equals(jedis.set("lock",id, "NX", "PX", unit.toMillis(time)))){
//持有锁的人的id
lockContext.set(id); ①
//记录当前的线程
setOwnerThread(t); ②
return true;
}else if(ownerThread == t){
//因为锁是可重入的,所以需要判断当前线程已经持有锁的情况
return true;
}else {
return false;
}
} private void setOwnerThread(Thread t){
this.ownerThread = t;
} public void unlock() {
String script = null;
try{
Jedis jedis = new Jedis("127.0.0.1",);
script = inputStream2String(getClass().getResourceAsStream("/Redis.Lua"));
if(lockContext.get()==null){
//没有人持有锁
return;
}
//删除锁 ③
jedis.eval(script, Arrays.asList("lock"), Arrays.asList(lockContext.get()));
lockContext.remove();
}catch (Exception e){
e.printStackTrace();
}
} /**
* 将InputStream转化成String
* @param is
* @return
* @throws IOException
*/
public String inputStream2String(InputStream is) throws IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int i = -;
while ((i = is.read()) != -) {
baos.write(i);
}
return baos.toString();
} public void lockInterruptibly() throws InterruptedException { } public Condition newCondition() {
return null;
}
}
  • 用一个上下文全局变量来记录持有锁的人的uuid,解锁的时候需要将该uuid作为参数传入Lua脚本中,来判断是否可以解锁。
  • 要记录当前线程,来实现分布式锁的重入性,如果是当前线程持有锁的话,也属于加锁成功。
  • 用eval函数来执行Lua脚本,保证解锁时的原子性。

六、分布式锁的对比

6.1 基于数据库的分布式锁

1)实现方式

获取锁的时候插入一条数据,解锁时删除数据。

2)缺点

  • 数据库如果挂掉会导致业务系统不可用。
  • 无法设置过期时间,会造成死锁。

6.2 基于zookeeper的分布式锁

1)实现方式

加锁时在指定节点的目录下创建一个新节点,释放锁的时候删除这个临时节点。因为有心跳检测的存在,所以不会发生死锁,更加安全

2)缺点

性能一般,没有Redis高效。

所以:

  • 从性能角度: Redis > zookeeper > 数据库
  • 从可靠性(安全)性角度: zookeeper > Redis > 数据库

七、总结

本文从锁的基本概念出发,提出多线程访问共享资源会出现的线程安全问题,然后通过加锁的方式去解决线程安全的问题,这个方法会性能会下降,需要通过:缩短锁的持有时间、减小锁的粒度、锁分离三种方式去优化锁。

之后介绍了分布式锁的4个特点:

  • 互斥性
  • 防死锁
  • 加锁人解锁
  • 可重入性

然后用Redis实现了分布式锁,加锁的时候用到了Redis的命令去加锁,解锁的时候则借助了Lua脚本来保证原子性。

最后对比了三种分布式锁的优缺点和使用场景。

希望大家对分布式锁有新的理解,也希望大家在考虑解决问题的同时要多想想性能的问题。

作者:杨亨

来源:宜信技术学院

Redis专题(3):锁的基本概念到Redis分布式锁实现的更多相关文章

  1. 一般实现分布式锁都有哪些方式?使用redis如何设计分布式锁?使用zk来设计分布式锁可以吗?这两种分布式锁的实现方式哪种效率比较高?

    #(1)redis分布式锁 官方叫做RedLock算法,是redis官方支持的分布式锁算法. 这个分布式锁有3个重要的考量点,互斥(只能有一个客户端获取锁),不能死锁,容错(大部分redis节点创建了 ...

  2. 分布式锁(3) ----- 基于zookeeper的分布式锁

    分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...

  3. 【Redis的那些事 · 上篇】Redis的介绍、五种数据结构演示和分布式锁

    Redis是什么 Redis,全称是Remote Dictionary Service,翻译过来就是,远程字典服务. redis属于nosql非关系型数据库.Nosql常见的数据关系,基本上是以key ...

  4. redis整理:常用命令,雪崩击穿穿透原因及方案,分布式锁实现思路,分布式锁redission(更新中)

    redis个人整理笔记 reids常见数据结构 基本类型 String: 普通key-value Hash: 类似hashMap List: 双向链表 Set: 不可重复 SortedSet: 不可重 ...

  5. Redis分布式锁 (图解-秒懂-史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

  6. 基于redis分布式锁实现“秒杀”

    转载:http://blog.5ibc.net/p/28883.html 最近在项目中遇到了类似“秒杀”的业务场景,在本篇博客中,我将用一个非常简单的demo,阐述实现所谓“秒杀”的基本思路. 业务场 ...

  7. 分布式锁的几种使用方式(redis、zookeeper、数据库)

    Q:一个业务服务器,一个数据库,操作:查询用户当前余额,扣除当前余额的3%作为手续费 synchronized lock db lock Q:两个业务服务器,一个数据库,操作:查询用户当前余额,扣除当 ...

  8. 分布式锁实现秒杀 - 基于redis实现

    业务场景 所谓秒杀,从业务角度看,是短时间内多个用户“争抢”资源,这里的资源在大部分秒杀场景里是商品:将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢, ...

  9. 如何优雅地用Redis实现分布式锁?

    转: 如何优雅地用Redis实现分布式锁?   BaiduSpring 01-2500:01 什么是分布式锁 在学习Java多线程编程的时候,锁是一个很重要也很基础的概念,锁可以看成是多线程情况下访问 ...

随机推荐

  1. Java和Tomcat安装教程

    jdk安装与配置1.下载好对应的jdk2.安装JDK 直接运行exe可执行程序,默认安装即可:备注:路径可以选其他盘符,路径要全部为英文. 3.配置环境变量 新建变量名:JAVA_HOME,变量值:D ...

  2. 2019年7-8月Leetcode每日训练日志

    2019-08-29 #274 H指数 2019-08-28 #287 寻找重复数 #875 爱吃香蕉的珂珂 #704 二分查找 2019-08-27 #744 寻找比目标字母大的最小字母 #225 ...

  3. Flink的Job启动TaskManager端(源码分析)

    前面说到了  Flink的JobManager启动(源码分析)  启动了TaskManager 然后  Flink的Job启动JobManager端(源码分析)  说到JobManager会将转化得到 ...

  4. 持续集成高级篇之基于win32-openssh搭建jenkins混合集群(一)

    系列目录 前面的demo我们使用的都是只有一个windows主节点的的jenkins,实际生产环境中,一个节点往往是不能满足需求的.比如,.net项目要使用windows节点构建,java项目如果部署 ...

  5. java-jsp特殊字符处理

    str = str.replaceAll("'", "''").replaceAll("\"", ""&quo ...

  6. Keras(五)LSTM 长短期记忆模型 原理及实例

    LSTM 是 long-short term memory 的简称, 中文叫做 长短期记忆. 是当下最流行的 RNN 形式之一 RNN 的弊端 RNN没有长久的记忆,比如一个句子太长时开头部分可能会忘 ...

  7. codeforce#483div2D-XOR-pyramid+DP

    题意:求给定区间中最大的连续异或和: 思路:DP的思想,先dp求出每个区间的异或和,再dp更新成当前这个dp[i][j]和dp[i-1][j].dp[i-1][j+1]中的最大值: 这样可以保证是同一 ...

  8. HDU 4322Candy 最大费用最大流

    由于被小孩子不喜欢的糖果的对小孩产生的效力是一样的,所以我们在网络流的时候先不考虑. 1 - 源点0到1~N个糖果,容量为1,费用为02 - 根据like数组,like[i][j] == 1时在糖果j ...

  9. CodeForces 223C Partial Sums 多次前缀和

    Partial Sums 题解: 一个数列多次前缀和之后, 对于第i个数来说他的答案就是 ; i <= n; ++i){ ; j <= i; ++j){ b[i] = (b[i] + 1l ...

  10. 牛客小白月赛6 F 发电 树状数组单点更新 求区间乘积 模板

    链接:https://www.nowcoder.com/acm/contest/136/F来源:牛客网  HA实验是一个生产.提炼“神力水晶”的秘密军事基地,神力水晶可以让机器的工作效率成倍提升.   ...