洛谷P2508 [HAOI2008]圆上的整点
题目描述
求一个给定的圆$ (x2+y2=r^2) $,在圆周上有多少个点的坐标是整数。
输入格式
\(r\)
输出格式
整点个数
输入输出样例
输入
4
输出
4
说明/提示
\(n\le 2000 000 000\)
思路
题目的所求可以转化为
问题的所求可以转化为\(y^{2}=r^2-x^2\)(其中\(x,y,r\)均为正整数).
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为正整数)
不妨设\((r-x)=d\times u------① (r+x)=d\times v------②(\)其中\(gcd(u,v)=1\))
则有\(y^2=d^2\times u \times v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2 \times s^2 \times v^2\),即\(y=d \times s \times v\)
\(②-①\)得\(x=\dfrac{t^2-s^2}{2}\times d\)
\(②+①\)得\(2\times r=(t^2+s^2)\times d\)
然后枚举\(2\times r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(x,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)\times 4\),(\(+1\)是因为坐标轴上有一点,\(\times 4\)是因为\(4\)个象限)
注意:小心乘法运算时爆\(long\) \(long\);
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#define int long long
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)) s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
inline void work(int d)
{
for(int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
洛谷P2508 [HAOI2008]圆上的整点的更多相关文章
- [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- P2508 [HAOI2008]圆上的整点
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...
- luogu P2508 [HAOI2008]圆上的整点
传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
随机推荐
- ZEN、ELECTRA、ALBERT
一.ZEN 目前,大多数中文预训练模型基本上沿用了英文模型的做法,聚焦于小颗粒度文本单元(字)的输入.然而,与英文相比,中文没有空格等明确的词语边界.这个特点使得很多文本表达中存在的交叉歧义也被带入了 ...
- golang之引用自己定义的包
初始目录如下: 其中main.go只有一个主函数main(),用于运行程序,array文件夹是自己定义的包,里面spArr.go位于package array. spArr中的函数名或变量首字母得大写 ...
- 洛谷 P4124 (数位 DP)
### 洛谷 P4124 题目链接 ### 题目大意: 给你一段区间,让你求满足下列两个条件时的数的个数. 1.至少有 3 个相邻相同数字 (即 111 .1111 .222 等) 2.不能同时出现 ...
- sierpinski地毯
(分形作业) 取一矩形,九等分而去其中. 每一份九等分去其中:循环往复. 方法一(传统方法) 将每个矩形映射到三个矩形中去即可. def big(a,times): k=3**tim ...
- 【Linux】LVM操作添加新硬盘
目录 1.查看当前硬盘及分区情况 2.初始化/dev/sdb为PV(physical volume) 3.PV加入至VG组. 4.创建lv 5.格式化逻辑分区 6.挂载硬盘/data 7.迁移zabb ...
- oracle自定义函数:将使用点分隔符的编码转成层级码格式的编码
维护一个旧的系统,表设计中只有编码,而没有其他排序相关的字段,然后根据编码排序出现了顺序错乱的问题. 详细地说,其编码设计是使用[.]分隔符的编码,比如1.1.1.1.1.1.1.1.1.2这样的格式 ...
- 英语阅读——Love and logic:The story of a fallacy
这篇文章是<新视野大学英语>第四册的第一单元的文章,读着挺有趣,便拿过来分享一下. 1 I had my first date with Polly after I made the tr ...
- Oracle - 截取指定日期的alert log
工作中DBA经常会查看alert log来检查数据库后台都记录了些什么日志,如果只想看某一天或者某段时间范围的日志,能够把这些日志从大的alert log中截取下来放到一个单独的文件中,对于查看和下载 ...
- HTTP 状态码及含义
来自 Koa.js 官方文档中关于设置请求响应的部分 response.status=,列出了从 1xx ~ 5xx HTTP 状态码及含义,现摘录如下: 100 "continue&quo ...
- 【IDEA】(1)---MAC下常用快捷键
IDEA常用快捷键 IDEA是一个很好的开发工具,用好它能大大提高我们的开发效率,所以这里学习总结下有关IDEA实用的一些教程,比如常用快捷键,如何自定义代码模版,如何debug异常断点,或者说多线程 ...