题目描述

求一个给定的圆$ (x2+y2=r^2) $,在圆周上有多少个点的坐标是整数。

输入格式

\(r\)

输出格式

整点个数

输入输出样例

输入

4

输出

4

说明/提示

\(n\le 2000 000 000\)

思路

题目的所求可以转化为

问题的所求可以转化为\(y^{2}=r^2-x^2\)(其中\(x,y,r\)均为正整数).

即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为正整数)

不妨设\((r-x)=d\times u------① (r+x)=d\times v------②(\)其中\(gcd(u,v)=1\))

则有\(y^2=d^2\times u \times v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)

则有\(y^2=d^2 \times s^2 \times v^2\),即\(y=d \times s \times v\)

\(②-①\)得\(x=\dfrac{t^2-s^2}{2}\times d\)

\(②+①\)得\(2\times r=(t^2+s^2)\times d\)

然后枚举\(2\times r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(x,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)

最后的答案为\((ans+1)\times 4\),(\(+1\)是因为坐标轴上有一点,\(\times 4\)是因为\(4\)个象限)

注意:小心乘法运算时爆\(long\) \(long\);

代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#define int long long
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)) s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
inline void work(int d)
{
for(int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}

洛谷P2508 [HAOI2008]圆上的整点的更多相关文章

  1. [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  2. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  3. P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...

  4. luogu P2508 [HAOI2008]圆上的整点

    传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...

  5. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  6. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  7. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  8. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  9. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

随机推荐

  1. SQL查询--约束

    在慕课网上学习时记的关于oracle中约束概念的基础笔记,当初一直对约束的概念不清不楚的,所以找了些资料来看   约束是数据库用来确保数据满足业务规则的手段 约束的作用:定义规则.确保完整性   1. ...

  2. 用OC基于链表实现链队列

    一.简言 在前面已经用C++介绍过链队列的基本算法,可以去回顾一下https://www.cnblogs.com/XYQ-208910/p/11692065.html.少说多做,还是上手撸代码实践一下 ...

  3. IT兄弟连 Java语法教程 标识符和关键字

    Java语言也和其它编程语言一样,使用标识符作为变量.对象的名字.也提供了一系列的关键字用以实现特别的功能.本小节将详细介绍Java语言的标识符和关键字等内容. 1.分隔符 Java语言里的分号“;” ...

  4. 轻量级监控平台之java进程监控脚本

    轻量级监控平台之java进程监控脚本 #!/bin/bash #进程监控脚本 #功能需求: 上报机器Java进程的进程ID,对应的端口号service tcp端口号,tomcat http 端口号,以 ...

  5. vue发送ajx请求 axios

    一. 简介 1.vue本身不支持发送AJAX请求,需要使用vue-resource(vue1.0版本).axios(vue2.0版本)等插件实现 2.axios是一个基于Promise的HTTP请求客 ...

  6. Scala,Java,Python 3种语言编写Spark WordCount示例

    首先,我先定义一个文件,hello.txt,里面的内容如下: hello sparkhello hadoophello flinkhello storm Scala方式 scala版本是2.11.8. ...

  7. Entity Framework 基础操作(1)

    EF是微软推出的官方ORM框架,默认防注入可以配合LINQ一起使用,更方便开发人员. 首先通过SQLSERVER现在有的数据库类生产EF 右键->添加->新建项,选择AOD.NET实体数据 ...

  8. 在CAD中进行圆角标注的方法

    在CAD中,大家经常都用听到CAD标注.那其实在CAD中进行标注也是比较常见的工作,CAD标注有文字标注,数值标注等一些标注的方式.下面要来说的就是在CAD中给圆角图形标注的方法,具体操作步骤如下: ...

  9. cmdb全总结

    1.什么是cmdb ,做什么的? 配置管理数据库 ,就是存储基础设施的信息配置使用的 简单说就是CMDB这个系统可以自动发现网络上的IT设备 ,并自动存储相关信息 ,像一台服务器有型号 厂商 系统 c ...

  10. jquery-uploadfile的使用(多文件异步上传)

    需求 在页面端可以在页面不刷新情况下上传多个有大小限制的word文件,并返回文件保存的路径,同时可以删除误上传的文件. 准备 下载该插件 该插件依赖jquery1.9.1版本(其它不清楚)*在jsp页 ...