洛谷P2508 [HAOI2008]圆上的整点
题目描述
求一个给定的圆$ (x2+y2=r^2) $,在圆周上有多少个点的坐标是整数。
输入格式
\(r\)
输出格式
整点个数
输入输出样例
输入
4
输出
4
说明/提示
\(n\le 2000 000 000\)
思路
题目的所求可以转化为
问题的所求可以转化为\(y^{2}=r^2-x^2\)(其中\(x,y,r\)均为正整数).
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为正整数)
不妨设\((r-x)=d\times u------① (r+x)=d\times v------②(\)其中\(gcd(u,v)=1\))
则有\(y^2=d^2\times u \times v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2 \times s^2 \times v^2\),即\(y=d \times s \times v\)
\(②-①\)得\(x=\dfrac{t^2-s^2}{2}\times d\)
\(②+①\)得\(2\times r=(t^2+s^2)\times d\)
然后枚举\(2\times r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(x,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)\times 4\),(\(+1\)是因为坐标轴上有一点,\(\times 4\)是因为\(4\)个象限)
注意:小心乘法运算时爆\(long\) \(long\);
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#define int long long
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)) s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
inline void work(int d)
{
for(int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
洛谷P2508 [HAOI2008]圆上的整点的更多相关文章
- [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- P2508 [HAOI2008]圆上的整点
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...
- luogu P2508 [HAOI2008]圆上的整点
传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
随机推荐
- linux编程stat检测文件元数据信息
#include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/sta ...
- ssh 免密码登录服务器
本机生成 ssh key ssh-keygen -t rsa -C "your_email@example.com" 上传公钥文件(假设用户为 user,服务器 ip 为 1.2. ...
- 【C#】C#获取本地的内网(局域网)和外网(公网)IP地址的方法
1.获取本机的IP地址集合: /// <summary> /// 获取本机所有ip地址 /// </summary> /// <param name="netT ...
- 2019 年 GitHub 上最热门的 Java 开源项目
1.JavaGuide https://github.com/Snailclimb/JavaGuide Star 22668 [Java 学习 + 面试指南] 一份涵盖大部分 Java 程序员所需要掌 ...
- IT兄弟连 Java语法教程 流程控制语句 分支结构语句1
不论哪一种编程语言,都会提供两种基本的流程控制结构:分支结构和循环结构.其中分支结构用于实现根据条件来选择性地执行某段代码,循环结构则用于实现根据循环条件重复执行某段代码.Java同样提供了这两种流程 ...
- C#截图操作(几种截图方法)
公共函数获取屏幕截图private Bitmap GetScreenCapture(){ Rectangle tScreenRect = new Rectangle(0, 0, Screen.Prim ...
- 转 googlenet论文解读
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014061630/article/det ...
- 【随笔】CLR:向头对象(Object Header)迈进一大步!!!
前言 在我之前一篇随笔里(戳我),我们知道,一个引用类型的对象,包含了2个额外的开销,一个是头对象(object header),一个是MT.我们接下来看看头对象到底有多神秘... Object He ...
- PlayJava Day007
今日所学: /* 2019.08.19开始学习,此为补档. */ 1.String类 实例化:①String name1 = "张三" ; ②String name2 = new ...
- Linux网络——查看网络连接情况的命令
Linux网络——查看网络连接情况的命令 摘要:本文主要学习了Linux中用来查看网络连接情况的命令. hostname命令 hostname命令用于显示和设置系统的主机名称,设置只是临时生效,永久生 ...