opencv::分水岭图像分割
分水岭分割方法原理 (3种)
- 基于浸泡理论的分水岭分割方法 (距离)
- 基于连通图的方法
- 基于距离变换的方法 图像形态学操作:
- 腐蚀与膨胀
- 开闭操作 分水岭算法运用
- 分割粘连对象,实现形态学操作与对象计数
- 图像分割


#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/images/coins_001.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src); Mat gray, binary, shifted;
pyrMeanShiftFiltering(src, shifted, , );
//imshow("shifted", shifted); //灰度
cvtColor(shifted, gray, COLOR_BGR2GRAY);
threshold(gray, binary, , , THRESH_BINARY | THRESH_OTSU);
//imshow("binary", binary); // 距离变换
Mat dist;
distanceTransform(binary, dist, DistanceTypes::DIST_L2, , CV_32F);
normalize(dist, dist, , , NORM_MINMAX);
//imshow("distance result", dist); // 二值化
threshold(dist, dist, 0.4, , THRESH_BINARY);
//imshow("distance binary", dist); // markers
Mat dist_m;
dist.convertTo(dist_m, CV_8U);
vector<vector<Point>> contours;
findContours(dist_m, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(, )); // create markers
Mat markers = Mat::zeros(src.size(), CV_32SC1);
for (size_t t = ; t < contours.size(); t++) {
drawContours(markers, contours, static_cast<int>(t), Scalar::all(static_cast<int>(t) + ), -);
}
circle(markers, Point(, ), , Scalar(), -);
//imshow("markers", markers*10000); // 形态学操作 - 彩色图像,目的是去掉干扰,让结果更好
Mat k = getStructuringElement(MORPH_RECT, Size(, ), Point(-, -));
morphologyEx(src, src, MORPH_ERODE, k); // 完成分水岭变换
watershed(src, markers);
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark, Mat());
//imshow("watershed result", mark); // generate random color
vector<Vec3b> colors;
for (size_t i = ; i < contours.size(); i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} // 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = ;
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
index = markers.at<int>(row, col);
if (index > && index <= contours.size()) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
} imshow("Final Result", dst);
printf("number of objects : %d\n", contours.size()); waitKey();
return ;
}

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; Mat watershedCluster(Mat &image, int &numSegments);
void createDisplaySegments(Mat &segments, int numSegments, Mat &image);
int main(int argc, char** argv) {
Mat src = imread("D:/images/cvtest.png");
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src); int numSegments;
Mat markers = watershedCluster(src, numSegments);
createDisplaySegments(markers, numSegments, src);
waitKey();
return ;
} Mat watershedCluster(Mat &image, int &numComp) {
// 二值化
Mat gray, binary;
cvtColor(image, gray, COLOR_BGR2GRAY);
//阈值
threshold(gray, binary, , , THRESH_BINARY | THRESH_OTSU);
// 形态学与距离变换
Mat k = getStructuringElement(MORPH_RECT, Size(, ), Point(-, -));
morphologyEx(binary, binary, MORPH_OPEN, k, Point(-, -));
Mat dist;
distanceTransform(binary, dist, DistanceTypes::DIST_L2, , CV_32F);
normalize(dist, dist, 0.0, 1.0, NORM_MINMAX); // 开始生成标记
threshold(dist, dist, 0.1, 1.0, THRESH_BINARY);
normalize(dist, dist, , , NORM_MINMAX);
dist.convertTo(dist, CV_8UC1); // 标记开始
vector<vector<Point>> contours;
vector<Vec4i> hireachy;
findContours(dist, contours, hireachy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
if (contours.empty()) {
return Mat();
} Mat markers(dist.size(), CV_32S);
markers = Scalar::all();
for (int i = ; i < contours.size(); i++) {
drawContours(markers, contours, i, Scalar(i + ), -, , hireachy, INT_MAX);
}
//填充
circle(markers, Point(, ), , Scalar(), -); // 分水岭变换
watershed(image, markers);
numComp = contours.size();
return markers;
} void createDisplaySegments(Mat &markers, int numSegments, Mat &image) {
// generate random color
vector<Vec3b> colors;
for (size_t i = ; i < numSegments; i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} // 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = ;
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
index = markers.at<int>(row, col);
if (index > && index <= numSegments) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
}
imshow("分水岭图像分割-演示", dst);
return;
}
opencv::分水岭图像分割的更多相关文章
- Opencv分水岭算法——watershed自动图像分割用法
分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...
- OpenCV 1 图像分割--分水岭算法代码
// watershed_test20140801.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" // // ch9_watershed ...
- opencv分水岭算法对图像进行切割
先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...
- OpenCV 之 图像分割 (一)
1 基于阈值 1.1 基本原理 灰度阈值化,是最简单也是速度最快的一种图像分割方法,广泛应用在硬件图像处理领域 (例如,基于 FPGA 的实时图像处理). 假设输入图像为 f,输出图像为 g,则经 ...
- Opencv 分水岭分割图片
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...
- opencv::KMeans图像分割
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- opencv 金字塔图像分割
我所知的opencv中分割函数:watershed(只是看看效果,不能返回每类pixel类属),cvsegmentImage,cvPyrSegmentation(返回pixel类属) 金字塔分割原理篇 ...
- OpenCV——分水岭算法
分水岭算法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形 ...
- opencv kmeans 图像分割
利用kmeans算法,将彩色图像的像素点作为样本,rgb值作为样本的属性, 对图像所有的像素点进行分类,从而实现对图像中目标的分割. c++代码(openCV 2.4.11) Scalar color ...
随机推荐
- 算法基础:BFS和DFS的直观解释
算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数 ...
- 《Python自动化测试九章经》
Python是当前非常流行的一门编程语言,它除了在人工智能.数据处理.Web开发.网络爬虫等领域得到广泛使用之外,他也非常适合软件测试人员使用,但是,对于刚入行的测试小白来说,并不知道学习Python ...
- SRDC - ORA-30013: Checklist of Evidence to Supply (Doc ID 1682701.1)
Action Plan 1. Execute srdc_db_undo_ora-30013.sql as sysdba and provide the spool output --srdc_db_u ...
- nm U -l库的
nm U -l库的
- Jmeter怎么搭建环境
1.JDK检查与安装 cmd输入命令:java -version -- 检查主机是否安装了JDK JDK下载官网:https://www.oracle.com/technetwork/java/j ...
- Mybatis的XML映射文件(四)
MyBatis 的真正强大在于它的映射语句,也是它的魔力所在.由于它的异常强大,映射器的 XML 文件就显得相对简单.如果拿它跟具有相同功能的 JDBC 代码进行对比,你会立即发现省掉了将近 95% ...
- 【Spring AOP】AOP实现原理(六)
原文链接:https://my.oschina.net/guangshan/blog/1797461
- NLP_DataFun:
智能机器人在滴滴出行场景的技术探索 分享嘉宾:熊超 滴滴 AI Labs 编辑整理:Hoh Xil 内容来源:AI 科学前沿大会 出品社区:DataFun 注:欢迎转载,转载请注明出处 本次分享是在2 ...
- 【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)
森林 考虑到题目中给出条件两点间至多只有一条路径. 就可以发现,这是一个森林. 而森林有一个很有用的性质. 考虑对于一棵树,点数-边数=\(1\). 因此对于一个森林,点数-边数=连通块个数. 所以, ...
- 随便读读skynet开源项目RILLSERVER
读RILL SERVER 因为源码是前段时间下载的,最近才拿出来分析,今天发现已经更新了,比如删除了module中订阅那些代码.但是并不影响总体的思路. 他加入了behavior3 . pl .FSM ...