分水岭分割方法原理 (3种)
- 基于浸泡理论的分水岭分割方法 (距离)
- 基于连通图的方法
- 基于距离变换的方法 图像形态学操作:
- 腐蚀与膨胀
- 开闭操作 分水岭算法运用
- 分割粘连对象,实现形态学操作与对象计数
- 图像分割

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/images/coins_001.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src); Mat gray, binary, shifted;
pyrMeanShiftFiltering(src, shifted, , );
//imshow("shifted", shifted); //灰度
cvtColor(shifted, gray, COLOR_BGR2GRAY);
threshold(gray, binary, , , THRESH_BINARY | THRESH_OTSU);
//imshow("binary", binary); // 距离变换
Mat dist;
distanceTransform(binary, dist, DistanceTypes::DIST_L2, , CV_32F);
normalize(dist, dist, , , NORM_MINMAX);
//imshow("distance result", dist); // 二值化
threshold(dist, dist, 0.4, , THRESH_BINARY);
//imshow("distance binary", dist); // markers
Mat dist_m;
dist.convertTo(dist_m, CV_8U);
vector<vector<Point>> contours;
findContours(dist_m, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(, )); // create markers
Mat markers = Mat::zeros(src.size(), CV_32SC1);
for (size_t t = ; t < contours.size(); t++) {
drawContours(markers, contours, static_cast<int>(t), Scalar::all(static_cast<int>(t) + ), -);
}
circle(markers, Point(, ), , Scalar(), -);
//imshow("markers", markers*10000); // 形态学操作 - 彩色图像,目的是去掉干扰,让结果更好
Mat k = getStructuringElement(MORPH_RECT, Size(, ), Point(-, -));
morphologyEx(src, src, MORPH_ERODE, k); // 完成分水岭变换
watershed(src, markers);
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark, Mat());
//imshow("watershed result", mark); // generate random color
vector<Vec3b> colors;
for (size_t i = ; i < contours.size(); i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} // 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = ;
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
index = markers.at<int>(row, col);
if (index > && index <= contours.size()) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
} imshow("Final Result", dst);
printf("number of objects : %d\n", contours.size()); waitKey();
return ;
}

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; Mat watershedCluster(Mat &image, int &numSegments);
void createDisplaySegments(Mat &segments, int numSegments, Mat &image);
int main(int argc, char** argv) {
Mat src = imread("D:/images/cvtest.png");
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src); int numSegments;
Mat markers = watershedCluster(src, numSegments);
createDisplaySegments(markers, numSegments, src);
waitKey();
return ;
} Mat watershedCluster(Mat &image, int &numComp) {
// 二值化
Mat gray, binary;
cvtColor(image, gray, COLOR_BGR2GRAY);
//阈值
threshold(gray, binary, , , THRESH_BINARY | THRESH_OTSU);
// 形态学与距离变换
Mat k = getStructuringElement(MORPH_RECT, Size(, ), Point(-, -));
morphologyEx(binary, binary, MORPH_OPEN, k, Point(-, -));
Mat dist;
distanceTransform(binary, dist, DistanceTypes::DIST_L2, , CV_32F);
normalize(dist, dist, 0.0, 1.0, NORM_MINMAX); // 开始生成标记
threshold(dist, dist, 0.1, 1.0, THRESH_BINARY);
normalize(dist, dist, , , NORM_MINMAX);
dist.convertTo(dist, CV_8UC1); // 标记开始
vector<vector<Point>> contours;
vector<Vec4i> hireachy;
findContours(dist, contours, hireachy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
if (contours.empty()) {
return Mat();
} Mat markers(dist.size(), CV_32S);
markers = Scalar::all();
for (int i = ; i < contours.size(); i++) {
drawContours(markers, contours, i, Scalar(i + ), -, , hireachy, INT_MAX);
}
//填充
circle(markers, Point(, ), , Scalar(), -); // 分水岭变换
watershed(image, markers);
numComp = contours.size();
return markers;
} void createDisplaySegments(Mat &markers, int numSegments, Mat &image) {
// generate random color
vector<Vec3b> colors;
for (size_t i = ; i < numSegments; i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} // 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = ;
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
index = markers.at<int>(row, col);
if (index > && index <= numSegments) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
}
imshow("分水岭图像分割-演示", dst);
return;
}

opencv::分水岭图像分割的更多相关文章

  1. Opencv分水岭算法——watershed自动图像分割用法

    分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...

  2. OpenCV 1 图像分割--分水岭算法代码

    // watershed_test20140801.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" // // ch9_watershed ...

  3. opencv分水岭算法对图像进行切割

    先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...

  4. OpenCV 之 图像分割 (一)

    1  基于阈值 1.1  基本原理 灰度阈值化,是最简单也是速度最快的一种图像分割方法,广泛应用在硬件图像处理领域 (例如,基于 FPGA 的实时图像处理). 假设输入图像为 f,输出图像为 g,则经 ...

  5. Opencv 分水岭分割图片

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  6. opencv::KMeans图像分割

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  7. opencv 金字塔图像分割

    我所知的opencv中分割函数:watershed(只是看看效果,不能返回每类pixel类属),cvsegmentImage,cvPyrSegmentation(返回pixel类属) 金字塔分割原理篇 ...

  8. OpenCV——分水岭算法

    分水岭算法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形 ...

  9. opencv kmeans 图像分割

    利用kmeans算法,将彩色图像的像素点作为样本,rgb值作为样本的属性, 对图像所有的像素点进行分类,从而实现对图像中目标的分割. c++代码(openCV 2.4.11) Scalar color ...

随机推荐

  1. Redis主从复制机制详解

    Redis主从复制机制详解 Redis有两种不同的持久化方式,Redis服务器通过持久化,把Redis内存中持久化到硬盘当中,当Redis宕机时,我们重启Redis服务器时,可以由RDB文件或AOF文 ...

  2. Mysql—数据备份与恢复

    数据备份 # 备份单个数据库 [root@localhost ~]# mysqldump -h主机名 -u用户名 -p密码 数据库名字 > 备份的数据库名字.sql [root@localhos ...

  3. win10 64位安装redis 及Redis Desktop Manager使用

    说多无益,先把redis在win上的开发环境搭一下. redis官方没有64位的Windows下的可执行程序,目前有个开源的托管在github上, 地址:https://github.com/Serv ...

  4. layer重复弹出(layui弹层同时存在多个)的解决方法

    layer.open() 同时存在多个;解决 layui 弹层 layer 同时存在多个页面层(iframe)的问题 这个问题其实是疏忽了一些 基础参数(仔细看文档,仔细看文档,仔细看文档) 一.ty ...

  5. [PHP] vscode配置SFTP扩展同步文件

    在我们的项目开发过程中,经常有一种模式,有一台linux的开发机作为我们的测试机器,上面安装了ftp服务.我们在windows系统的本地机器使用IDE编写代码,自动或者保存时同步上传到测试机下,这样就 ...

  6. JSP知识总结

    day11 JSP入门 1 JSP概述 1.1 什么是JSP JSP(Java Server Pages)是JavaWeb服务器端的动态资源.它与html页面的作用是相同的,显示数据和获取数据. 1. ...

  7. Vue项目开发前的准备工作,node的安装,vue-cli的安装

    一.安装node 1-  点击这里进入node官网下载 2- 3- 下载完成是这样的 4-  双击打开进行安装,一路next,安装完成是这样 5-  打开cmd进入安装node的文件夹,输入node ...

  8. SpringCloud学习笔记(五、SpringCloud Netflix Hystrix)

    目录: Hystrix简介 线程隔离:线程池.信号量 服务降级.服务熔断.请求缓存.请求合并 Hystrix完整流程.Hystrix属性值 注解方式实现Hystrix Hystrix Dashboar ...

  9. 扎西平措 201571030332 《面向对象程序设计(java)课程学习进度条》

    <2019面向对象程序设计(java)课程学习进度条> 周次 (阅读/编写)代码行数 发布博客量/评论他人博客数量 课余学习时间(小时) 学习收获最大的程序 阅读或编译让我 第一周 20/ ...

  10. php安全字段和防止XSS跨站脚本攻击过滤函数

    function escape($string) { global $_POST; $search = array ( '/</i', '/>/i', '/\">/i', ...