NLP系列文章:子词嵌入(fastText)的理解!(附代码)
1. 什么是fastText
英语单词通常有其内部结构和形成⽅式。例如,我们可以从“dog”“dogs”和“dogcatcher”的字⾯上推测它们的关系。这些词都有同⼀个词根“dog”,但使⽤不同的后缀来改变词的含义。而且,这个关联可以推⼴⾄其他词汇。
在word2vec中,我们并没有直接利⽤构词学中的信息。⽆论是在跳字模型还是连续词袋模型中,我们都将形态不同的单词⽤不同的向量来表⽰。例如,“dog”和“dogs”分别⽤两个不同的向量表⽰,而模型中并未直接表达这两个向量之间的关系。鉴于此,fastText提出了⼦词嵌⼊(subword embedding)的⽅法,从而试图将构词信息引⼊word2vec中的CBOW。
这里有一点需要特别注意,一般情况下,使用fastText进行文本分类的同时也会产生词的embedding,即embedding是fastText分类的产物。除非你决定使用预训练的embedding来训练fastText分类模型,这另当别论。
2. n-gram表示单词
word2vec把语料库中的每个单词当成原子的,它会为每个单词生成一个向量。这忽略了单词内部的形态特征,比如:“book” 和“books”,“阿里巴巴”和“阿里”,这两个例子中,两个单词都有较多公共字符,即它们的内部形态类似,但是在传统的word2vec中,这种单词内部形态信息因为它们被转换成不同的id丢失了。
为了克服这个问题,fastText使用了字符级别的n-grams来表示一个单词。对于单词“book”,假设n的取值为3,则它的trigram有:
“<bo”, “boo”, “ook”, “ok>”
其中,<表示前缀,>表示后缀。于是,我们可以用这些trigram来表示“book”这个单词,进一步,我们可以用这4个trigram的向量叠加来表示“apple”的词向量。
这带来两点好处:
- 对于低频词生成的词向量效果会更好。因为它们的n-gram可以和其它词共享。
- 对于训练词库之外的单词,仍然可以构建它们的词向量。我们可以叠加它们的字符级n-gram向量。
3. fastText模型架构
之前提到过,fastText模型架构和word2vec的CBOW模型架构非常相似。下面是fastText模型架构图:

注意:此架构图没有展示词向量的训练过程。可以看到,和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。
不同的是,
- CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征,这些特征用来表示单个文档;
- CBOW的输入单词被one-hot编码过,fastText的输入特征是被embedding过;
- CBOW的输出是目标词汇,fastText的输出是文档对应的类标。
值得注意的是,fastText在输入时,将单词的字符级别的n-gram向量作为额外的特征;在输出时,fastText采用了分层Softmax,大大降低了模型训练时间。这两个知识点在前文中已经讲过,这里不再赘述。
fastText相关公式的推导和CBOW非常类似,这里也不展开了。
4. fastText核心思想
现在抛开那些不是很讨人喜欢的公式推导,来想一想fastText文本分类的核心思想是什么?
仔细观察模型的后半部分,即从隐含层输出到输出层输出,会发现它就是一个softmax线性多类别分类器,分类器的输入是一个用来表征当前文档的向量;
模型的前半部分,即从输入层输入到隐含层输出部分,主要在做一件事情:生成用来表征文档的向量。那么它是如何做的呢?叠加构成这篇文档的所有词及n-gram的词向量,然后取平均。叠加词向量背后的思想就是传统的词袋法,即将文档看成一个由词构成的集合。
于是fastText的核心思想就是:将整篇文档的词及n-gram向量叠加平均得到文档向量,然后使用文档向量做softmax多分类。这中间涉及到两个技巧:字符级n-gram特征的引入以及分层Softmax分类。
5. 输出分类的效果
还有个问题,就是为何fastText的分类效果常常不输于传统的非线性分类器?
假设我们有两段文本:
肚子 饿了 我 要 吃饭
肚子 饿了 我 要 吃东西
这两段文本意思几乎一模一样,如果要分类,肯定要分到同一个类中去。但在传统的分类器中,用来表征这两段文本的向量可能差距非常大。传统的文本分类中,你需要计算出每个词的权重,比如TF-IDF值, “吃饭”和“吃东西” 算出的TF-IDF值相差可能会比较大,其它词类似,于是,VSM(向量空间模型)中用来表征这两段文本的文本向量差别可能比较大。
但是fastText就不一样了,它是用单词的embedding叠加获得的文档向量,词向量的重要特点就是向量的距离可以用来衡量单词间的语义相似程度,于是,在fastText模型中,这两段文本的向量应该是非常相似的,于是,它们很大概率会被分到同一个类中。
使用词embedding而非词本身作为特征,这是fastText效果好的一个原因;另一个原因就是字符级n-gram特征的引入对分类效果会有一些提升 。
6. fastText与Word2Vec的不同
有意思的是,fastText和Word2Vec的作者是同一个人。
相同点:
- 图模型结构很像,都是采用embedding向量的形式,得到word的隐向量表达。
- 都采用很多相似的优化方法,比如使用Hierarchical softmax优化训练和预测中的打分速度。
之前一直不明白fasttext用层次softmax时叶子节点是啥,CBOW很清楚,它的叶子节点是词和词频,后来看了源码才知道,其实fasttext叶子节点里是类标和类标的频数。
| Word2Vec | fastText | |
|---|---|---|
| 输入 | one-hot形式的单词的向量 | embedding过的单词的词向量和n-gram向量 |
| 输出 | 对应的是每一个term,计算某term概率最大 | 对应的是分类的标签。 |
本质不同,体现在softmax的使用:
word2vec的目的是得到词向量,该词向量最终是在输入层得到的,输出层对应的h-softmax也会生成一系列的向量,但是最终都被抛弃,不会使用。
fastText则充分利用了h-softmax的分类功能,遍历分类树的所有叶节点,找到概率最大的label
fastText优点:
- 适合大型数据+高效的训练速度:能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”
- 支持多语言表达:利用其语言形态结构,fastText能够被设计用来支持包括英语、德语、西班牙语、法语以及捷克语等多种语言。FastText的性能要比时下流行的word2vec工具明显好上不少,也比其他目前最先进的词态词汇表征要好。
- 专注于文本分类,在许多标准问题上实现当下最好的表现(例如文本倾向性分析或标签预测)。
7. 代码实现
清华文本分类数据集下载:https://thunlp.oss-cn-qingdao.aliyuncs.com/THUCNews.zip

8. 参考文献
作者:@mantchs
GitHub:https://github.com/NLP-LOVE/ML-NLP
欢迎大家加入讨论!共同完善此项目!群号:【541954936】
NLP系列文章:子词嵌入(fastText)的理解!(附代码)的更多相关文章
- NHibernate系列文章十七:NHibernate Session管理(附程序下载)
摘要 NHibernate的Session的管理涉及到NHibernate的两个最重要的对象ISessionFactory和ISession.ISessionFactory的生成非常消耗资源,通常都在 ...
- 词嵌入之FastText
什么是FastText FastText是Facebook于2016年开源的一个词向量计算和文本分类工具,它提出了子词嵌入的方法,试图在词嵌入向量中引入构词信息.一般情况下,使用fastText进行文 ...
- L25词嵌入进阶GloVe模型
词嵌入进阶 在"Word2Vec的实现"一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词.虽然 Word2Vec 已经能够成 ...
- Office 365 开发概览系列文章和教程
Office 365 开发概览系列文章和教程 原文于2017年2月26日首发于LinkedIn,请参考链接 引子 之前我在Office 365技术社群(O萌)中跟大家提到,3月初适逢Visual St ...
- 斯坦福NLP课程 | 第12讲 - NLP子词模型
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 【NLP】蓦然回首:谈谈学习模型的评估系列文章(一)
统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量. ...
- NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域 ...
- 带你了解NLP的词嵌入
摘要:今天带领大家学习自然语言处理中的词嵌入的内容. 本文分享自华为云社区<[MindSpore易点通]深度学习系列-词嵌入>,作者:Skytier. 1 特征表示 在自然语言处理中,有一 ...
- Coursera Deep Learning笔记 序列模型(二)NLP & Word Embeddings(自然语言处理与词嵌入)
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距 ...
随机推荐
- [记录]python使用serial模块实现实时WebConsole
###tornado+websocket+多进程实现: 1.index.html <!DOCTYPE HTML> <html> <head> <style&g ...
- java面试题库(长期)
本文内容来自互联网各种面试实例,以及自己的面试经历,主要是中级开发的面试题 初中级java面试主要分为几个部分: 0.序 1.java基础 2. java多线程 3. jvm知识 4. spring等 ...
- 第一届合天杯河北科技大学网络安全技术大赛 web6 writeup
- Java项目案例之---登录和修改(JSP)
登录和修改(JSP) 通过案例学习jsp的常用知识点: 1.创建一个Map集合,用于存放学生信息,将学生信息存入Map中 2.通过page将需要的包导入 3.用request.getParameter ...
- 洛谷 P1101-题解
这道题可以用深搜(回溯)来写,相信大部分人都是这么想的,但是有些人可能在一些地方饶了半天,所以这里就贴一下我的思路,个人觉得自己的很好懂,除了tx和ty那里,但是tx和ty的那种用法对于输出路径的题目 ...
- 简单分析线程获取ReentrantReadWriteLock 读锁的规则
1. 问题 最近有同事问了我一个问题,在Java编程中,当有一条线程要获取ReentrantReadWriteLock的读锁,此时已经有其他线程获得了读锁,AQS队列里也有线程在等待写锁.由于读锁是共 ...
- 一文带你实现RPC框架
想要获取更多文章可以访问我的博客 - 代码无止境. 现在大部分的互联网公司都会采用微服务架构,但具体实现微服务架构的方式有所不同,主流上分为两种,一种是基于Http协议的远程调用,另外一种是基于RPC ...
- 开发者福音!面向Web场景的云开发服务正式开放!
导 语 继支持小程序开发之后,云开发也支持Web使用啦!开发者们可以使用云开发提供的云端能力,直接开发网站应用,如PC端网页.公众号中的网页等.由此开发者可以在网站应用中借助云函数实现业务逻辑,通过与 ...
- 7月新的开始 - LayUI的基本使用 - Tab选项卡切换显示对应数据
LayUI tab选项卡+page展示 要求:实现tab选项卡改变的同时展示数据也跟着改变 实现条件: 1. 选项卡 [官网 – 文档/示例 – 页面元素 – 选项卡] 2.数据表格 [官网 – 文档 ...
- java - 解释内存中的栈(stack)、堆(heap)和方法区(method area)的用法
通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用JVM中的栈空间: 而通过new关键字和构造器创建的对象则放在堆空间,堆是垃圾收集器管理的主要区域,由于现在的垃圾收 ...
