题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1024

题意:

给定序列,给定m,求m个子段的最大和。

分析:

设dp[i][j]为以第j个元素结尾的i个子段的和。

对于每个元素有和前一个元素并在一起构成一个子段,和单独开启一个子段两种可能,状态转移方程

dp[i][j] = max(dp[i][j - 1], dp[i - 1][k]) + a[j] (k >= i - 1 && k <= j - 1)

时间复杂度O(m∗n2),n高达1e6,肯定超时。

接着可以用滚动数组进行空间和时间的优化。

直接开一个数组存储这个 dp[i−1][k],也就是前j个元素中子段数为i - 1的最大值,用ans记录当前数目子段的最大值,然后子段数不断增加的过程中不断更新。时间复杂度O(n∗m)。

我觉得ans和数组dp,t都应该long long的,发现int也能A。。。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>>
using namespace std;
#define sa(a) scanf("%d", &a)
#define sal(a) scanf("%I64d", &a)
const int maxn = 1e6 + 5, INF = 0x3f3f3f3f;
int a[maxn];
long long dp[maxn], t[maxn];
int main (void)
{
int n, m;
while(~scanf("%d%d", &m, &n)){
memset(dp, 0, sizeof(dp));
memset(t, 0, sizeof(t));
for(int i = 1; i <= n; i++) sa(a[i]);
long long ans;
for(int i = 1; i <= m; i++){
ans = -INF;
for(int j = i; j <= n; j++){
dp[j] = max(dp[j - 1], t[j - 1])+ a[j];
t[j - 1] = ans;
ans = max(ans, dp[j]);
}
}
printf("%d\n", ans);
}
return 0;
}
/*
1 2 2 3
3 3 -3 -3 -3
*/

HDU 1024 Max Sum Plus Plus【DP,最大m子段和】的更多相关文章

  1. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  2. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  3. hdu 1024 Max Sum Plus Plus DP

    Max Sum Plus Plus Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php ...

  4. HDU - 1024 Max Sum Plus Plus 最大m段子段和+滚动数组优化

    给定n个数字,求其中m段的最大值(段与段之间不用连续,但是一段中要连续) 例如:2 5 1 -2 2 3 -1五个数字中选2个,选择1和2 3这两段. dp[i][j]从前j个数字中选择i段,然后根据 ...

  5. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  6. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  7. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  8. HDU 1024 Max Sum Plus Plus(基础dp)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  10. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. Centos 6 安装python2.7.6

    centos 是自带python的.但是版本稍微旧一些.搞python开发,肯定要用新一点的稳定版.所以,要升级一下python. 先去python主站下载python的源码包:Python-2.7. ...

  2. 移动端超级好用的reset.css(只做参考哦具体以你们实际项目需求为准)

    html { color: #333; /*规定主色调,依据业务场景(非必须)*/ background: #F6F6F6; /*规定主背景,依据业务场景(非必须)*/ overflow-y: aut ...

  3. 解决异常System.Runtime.Interopservices.COMException RequestLock问题

    工具——导入导出设置,重置调试设置就可以了,这是调试文件的异常

  4. sqlite3:深入理解sqlite3_stmt 机制

    我们在使用sqlite3的过程中,涉及到批量操作时(批量插入.批量读...),总会遇到 sqlite3_stmt这个数据类型,按照官方解释说法是这样的:sqlite3_stmt是C接口中“准备语句对象 ...

  5. python django项目断点调试

  6. vue获取v-model数据类型boolean改变成string

    问题描述 今天产品问我一线上bug,怎么radio类型改不了 问题分析 看代码,之前的哥们儿是怎么写的 //页面 <div class="ui-form-box"> & ...

  7. UVA-1625-Color Length(DP LCS变形)

    Color Length(UVA-1625)(DP LCS变形) 题目大意 输入两个长度分别为n,m(<5000)的颜色序列.要求按顺序合成同一个序列,即每次可以把一个序列开头的颜色放到新序列的 ...

  8. 小程序之Button组件,函数的调用与简单的逻辑

    我们要实现一个简单的功能,在界面上放置一张图片,设置重新加载按钮,能更新图片. WXML代码: <!--index.wxml--> <view clas="index&qu ...

  9. configparser ,subprocess , xlrd ,xlwt 模块

    一,configparser模块 ''' configparser模块: 是什么: 用于解析配置文件的模块 配置文件的定义: 用于编写保存某个软件或某个系统的一系列参数的文件 设置参数 为什么需要配置 ...

  10. 前端基础之CSS_1

    摘要 CSS(层叠样式表)的三种设置方法 基本选择器 组合选择器 属性选择器 分组与嵌套 伪类选择器 伪元素选择器 选择器的优先级 一些样式的设置(字体.文本.背景.边框) display属性设置 0 ...