//半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题。

#include<iostream>
#include<cstring>
using namespace std;
int a[1000001];int p[1000000]; //用a来筛去m的唯一分解后的质因子及其倍数,流下就是与其互质的数。
int main()
{
int m,k;
while(cin>>m>>k)
{
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
int mm=m;
for(int i=2;i<=mm;i++) //此处mm即可
{
if(mm%i==0)
{
for(int j=i;j<=m;j+=i) //筛去
a[j]=1;
while(mm%i==0)mm/=i; //除掉
}
}
int t=1; //t记录有多少个,
for(int i=1;i<=m;i++)
{
if(a[i]==0)p[t++]=i; //p[i]记录第i个互质数(1--m)
}
t--; //1--m内有t个,那么m--2m,2m--3m....必然也有t个!每层相差m。
if(k%t==0)cout<<p[t]+m*(k/t-1)<<endl;//考虑特殊位子。
else cout<<m*(k/t)+p[k%t]<<endl;
}
return 0;
}

poj2773求第K个与m互质的数的更多相关文章

  1. 一个简单的公式——求小于N且与N互质的数的和

    首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...

  2. BOJ 2773 第K个与m互质的数

    算法是关键,得出1-m内的互质数,然后类推计算即可.下面有详细说明. #include<iostream> #include<cstring> using namespace ...

  3. 求小于n且与n互质的数的个数

    int eu(int n){ int ans=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/ ...

  4. 求N以内与N互质的数的和

    题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...

  5. 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法

    [欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...

  6. 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法

    [HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...

  7. 容斥原理 求M以内有多少个跟N是互质的

    开始系统的学习容斥原理!通常我们求1-n中与n互质的数的个数都是用欧拉函数! 但如果n比较大或者是求1-m中与n互质的数的个数等等问题,要想时间效率高的话还是用容斥原理!   本题是求[a,b]中与n ...

  8. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

  9. HDU-1695 GCD(求一个区间内与一个数互质的个数)

    题意: 给你一个T,是样例的个数,接下来是五个数l1,r1,l2,r2,k  前四个数代表两个区间(l1,r1),(l2,r2)这个题l1=1,l2=1; 取x1属于(1,r1),x2属于(1,r2) ...

随机推荐

  1. 将vue-cli项目配置在nginx上

    登录使用的是node.js搭建的注册登录接口,关于对数据库的读写则是用spring boot的框架来实现的. 1.首先是vue-cli项目里的前端页面的配置: location / { root    ...

  2. arttemplate模板引擎有假数据返回数据多层内嵌的渲染方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Summary of 2016 International Trusted Computing and Cloud Security Summit

    1)      Welcome Remarks 2)      The advancement of Cloud Computing and Tursted Computing national st ...

  4. Sql Server RowNumber和表变量分页性能优化小计

    直接让代码了,对比看看就了解了 当然,这种情况比较适合提取字段较多的情况,要酌情而定 性能较差的: WITH #temp AS                       (              ...

  5. linux之awk命令

    一.awk的内置参数 $0:表示整个当前行 $1:每行第一个字段 $2:每行第二个字段 $n:每行第n个字段 awk的参数:分隔符 -F separator 设定分隔符(默认为空格) 打印单个字段: ...

  6. zabbix 报警通知选项配置

    {TRIGGER.STATUS} host: {HOSTNAME} IP: {HOST.IP} events_time:{EVENT.DATE} {EVENT.TIME} notice_time:{D ...

  7. core 中使用 swagger

    引包 代码 public IServiceProvider ConfigureServices(IServiceCollection services) { services.AddMvc().Set ...

  8. iptables 防火墙

    运行源地址为192.168.10.10-192.168.10.50 这个网段的机器访问本机的20-25还有80.443.6379端口进来的流量 iptables -A INPUT -p tcp -m ...

  9. Android studio Github 断开连接

    http://blog.csdn.net/agoodcoolman/article/details/50562301 使用软件:Android studio svn:Github 从github直接从 ...

  10. OpenCV2:第六章 图像几何变换

    一.简介 图像的几何变换有距离变换 坐标映射 平移  镜像 旋转  缩放  仿射变换等 二.重映射 把一张图像重新排列像素,比如倒置 CV_EXPORTS_W void remap( InputArr ...