poj2773求第K个与m互质的数
//半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题。
#include<iostream>
#include<cstring>
using namespace std;
int a[1000001];int p[1000000]; //用a来筛去m的唯一分解后的质因子及其倍数,流下就是与其互质的数。
int main()
{
int m,k;
while(cin>>m>>k)
{
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
int mm=m;
for(int i=2;i<=mm;i++) //此处mm即可
{
if(mm%i==0)
{
for(int j=i;j<=m;j+=i) //筛去
a[j]=1;
while(mm%i==0)mm/=i; //除掉
}
}
int t=1; //t记录有多少个,
for(int i=1;i<=m;i++)
{
if(a[i]==0)p[t++]=i; //p[i]记录第i个互质数(1--m)
}
t--; //1--m内有t个,那么m--2m,2m--3m....必然也有t个!每层相差m。
if(k%t==0)cout<<p[t]+m*(k/t-1)<<endl;//考虑特殊位子。
else cout<<m*(k/t)+p[k%t]<<endl;
}
return 0;
}
poj2773求第K个与m互质的数的更多相关文章
- 一个简单的公式——求小于N且与N互质的数的和
首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...
- BOJ 2773 第K个与m互质的数
算法是关键,得出1-m内的互质数,然后类推计算即可.下面有详细说明. #include<iostream> #include<cstring> using namespace ...
- 求小于n且与n互质的数的个数
int eu(int n){ int ans=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/ ...
- 求N以内与N互质的数的和
题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...
- 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...
- 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法
[HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...
- 容斥原理 求M以内有多少个跟N是互质的
开始系统的学习容斥原理!通常我们求1-n中与n互质的数的个数都是用欧拉函数! 但如果n比较大或者是求1-m中与n互质的数的个数等等问题,要想时间效率高的话还是用容斥原理! 本题是求[a,b]中与n ...
- UVA12493 - Stars(求1-N与N互质的个数)欧拉函数
Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...
- HDU-1695 GCD(求一个区间内与一个数互质的个数)
题意: 给你一个T,是样例的个数,接下来是五个数l1,r1,l2,r2,k 前四个数代表两个区间(l1,r1),(l2,r2)这个题l1=1,l2=1; 取x1属于(1,r1),x2属于(1,r2) ...
随机推荐
- 将vue-cli项目配置在nginx上
登录使用的是node.js搭建的注册登录接口,关于对数据库的读写则是用spring boot的框架来实现的. 1.首先是vue-cli项目里的前端页面的配置: location / { root ...
- arttemplate模板引擎有假数据返回数据多层内嵌的渲染方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Summary of 2016 International Trusted Computing and Cloud Security Summit
1) Welcome Remarks 2) The advancement of Cloud Computing and Tursted Computing national st ...
- Sql Server RowNumber和表变量分页性能优化小计
直接让代码了,对比看看就了解了 当然,这种情况比较适合提取字段较多的情况,要酌情而定 性能较差的: WITH #temp AS ( ...
- linux之awk命令
一.awk的内置参数 $0:表示整个当前行 $1:每行第一个字段 $2:每行第二个字段 $n:每行第n个字段 awk的参数:分隔符 -F separator 设定分隔符(默认为空格) 打印单个字段: ...
- zabbix 报警通知选项配置
{TRIGGER.STATUS} host: {HOSTNAME} IP: {HOST.IP} events_time:{EVENT.DATE} {EVENT.TIME} notice_time:{D ...
- core 中使用 swagger
引包 代码 public IServiceProvider ConfigureServices(IServiceCollection services) { services.AddMvc().Set ...
- iptables 防火墙
运行源地址为192.168.10.10-192.168.10.50 这个网段的机器访问本机的20-25还有80.443.6379端口进来的流量 iptables -A INPUT -p tcp -m ...
- Android studio Github 断开连接
http://blog.csdn.net/agoodcoolman/article/details/50562301 使用软件:Android studio svn:Github 从github直接从 ...
- OpenCV2:第六章 图像几何变换
一.简介 图像的几何变换有距离变换 坐标映射 平移 镜像 旋转 缩放 仿射变换等 二.重映射 把一张图像重新排列像素,比如倒置 CV_EXPORTS_W void remap( InputArr ...