倍增法求LCA
倍增法求LCA
LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先。
倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可以在O(logn)的时间内求出求出任意节点的任意祖先。
然后先把两个节点中转化为深度相同的节点,然后一起向上递增,知道找到相同的节点,该节点就是这两个节点的最近公共祖先。
代码实现:
#include<cstdio>
#include<iostream>
#define N 42000
using namespace std;
int next[N],to[N],head[N],num,deep[N],father[N][],n,m,p,a,b,c;
void add(int false_from,int false_to){
next[++num]=head[false_from];
to[num]=false_to;
head[false_from]=num;
}
void dfs(int x){
deep[x]=deep[father[x][]]+;
for(int i=;father[x][i];i++)
father[x][i+]=father[father[x][i]][i];
for(int i=head[x];i;i=next[i])
if(!deep[to[i]]){
father[to[i]][]=x;
dfs(to[i]);
}
}
int lca(int x,int y){
if(deep[x]>deep[y])
swap(x,y);
for(int i=;i>=;i--)
if(deep[father[y][i]]>=deep[x])
y=father[y][i];
if(x==y)
return y;
for(int i=;i>=;i--)
if(father[y][i]!=father[x][i]){
y=father[y][i];
x=father[x][i];
}
return father[x][];
}
int main(){
scanf("%d%d%d",&n,&m,&p);
for(int i=;i<n;++i){
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
dfs(p);
for(int i=;i<=m;++i){
scanf("%d%d",&a,&b);
printf("%d ",lca(a,b));
}
return ;
}
预处理复杂度:O(nlogn)。
一组询问复杂度:O(logn)。
空间复杂度:O(nlogn)。
在线算法。
倍增法求LCA的更多相关文章
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- 树上倍增法求LCA
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...
- 倍增法求LCA(最近公共最先)
对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10, 15和16的最近公共 ...
- 在线倍增法求LCA专题
1.cojs 186. [USACO Oct08] 牧场旅行 ★★ 输入文件:pwalk.in 输出文件:pwalk.out 简单对比时间限制:1 s 内存限制:128 MB n个被自 ...
- 倍增法求lca:暗的连锁
https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...
- 倍增法求LCA代码加详细注释
#include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...
- 浅谈倍增法求解LCA
Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...
- RMQ(倍增法求ST)
解决什么问题:区间查询最值 倍增思想:每次得出结果的范围呈2的幂次增长,有人说相当于二分,目前我觉得相当于线段树的查找. 具体理解看代码: /*倍增法求ST*/ #include<math.h& ...
随机推荐
- poj2377 Bad Cowtractors
思路: 最大生成树. 实现: #include <iostream> #include <cstdio> #include <vector> #include &l ...
- 【学习笔记】深入理解js原型和闭包(0)——目录
文章转载:https://www.cnblogs.com/wangfupeng1988/p/4001284.html 说明: 本篇文章一共16篇章,外加两篇后补的和一篇自己后来添加的学习笔记,一共19 ...
- java写跳一跳辅助程序
##起初是想使用按键精灵脚本程序控制,但还是选择熟悉的java.我这里使用了工具,造成延迟问题.也求教:java控制安卓的正确姿势, 参考了.NET玩跳一跳,思路都是一样的,只不过使用ADB控制安卓的 ...
- AlertDialog的几种用法
xml代码: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andro ...
- 一条陌生的出路【过往d心声】
一条陌生的出路 Vashon的心声 人生就像一列车,车上总有形形色色的人穿梭往来.你也可能会在车上遇到很多你以为有缘分的人,但是车也会有停下来的时候,总会有人从人生这列车上上下下,当你下去的时候你挥挥 ...
- 【HEVC简介】ALF-Adative Loop Filter
由于HEVC在HM4.0之后,就把ALF去掉,所以ALF的介绍是基于AVS2. <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com ...
- 工作中Git使用笔记
git相关说明. //git 安装$ git config --global user.name "xxx"代码提交时的用户名,与GITLAB注册用户名建议保持一致$ git co ...
- npm与cnpm
npm介绍 说明:npm(node package manager)是nodejs的包管理器,用于node插件管理(包括安装.卸载.管理依赖等) 使用npm安装插件:命令提示符执行npm instal ...
- 世平信息(W 笔试)
选择题 大题 1.启动Thread的方法有几种 算法题 1.写出冒泡排序算法
- WPF知识点全攻略01- WPF相对WinFrom的优缺点
对比WPF和WinFrom前,先来了解下GUI现阶段在用的其他一些开发技术: MFC:微软基础类库,以C++的形式封装了Windows API,加上一些实用工具类. QT:奇趣科技开发的跨平台C++图 ...