[bzoj3160]万径人踪灭_FFT_Manacher
万径人踪灭 bzoj-3160
题目大意:给定一个ab串。求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续。
注释:$1\le n\le 10^5$。
想法:
看了大爷的题解,OrzOrz。
因为对称轴可以是两个字符中间的位置,所以我们把字符串按照$Manacher$的形式倍增。
我们希望处理出一个数组$f$,$f_i$表示以$i$为对称轴的左右相等字符个数。
以当前位置为对称轴的答案显然就是$2^{f_i}-1$。
因为还有不连续的条件,我们只需要减掉$Manacher$的回文半径即可。
现在考虑如何能求出$f$数组。
不难发现:其实原序列中的第$i$个字符如果和第$j$个字符相等那么会更新到倍增序列后的第$i+j$个字符。
所以$f_i=((\sum\limits_{j=0}^{i-1} (s[j]==s[i-j]))+1)/2$。
看起来像卷积的形式,想到$FFT$。
但是$FFT$只能做乘法,这个题怎么办?
我们先把所有的$a$字符都变成$1$,$b$字符变成$0$,然后统计$((\sum\limits_{j=0}^{i-1} a[j]\cdot a[i-j])+1)/2$。
再把所有的$b$字符变成$1$,$a$字符变成$0$。
用$FFT$优化卷积即可。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define mod 1000000007
#define N 100010
using namespace std;
typedef long long ll;
typedef double db;
const db pi=acos(-1);
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_){x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N<<2];
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp w,wn,tmp;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
t=k>>1;
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}
char s[N],t[N<<1];int f[N<<1],n,m,c[N<<2],ans,p[N<<2];
void manacher()
{
for(int i=0;i<n;i++)
{
t[++m]='#';
t[++m]=s[i];
}
t[++m]='#';
f[1]=0;
for(int now=1,i=1;i<=m;i++)
{
f[i]=min(f[(now<<1)-i],now+f[now]-i);
for(;i+f[i]<m&&i-f[i]>1;f[i]++) if(t[i+f[i]+1]!=t[i-f[i]-1]) break;
if(i+f[i]>now+f[now]) now=i;
ans-=(f[i]+1)>>1;
ans%=mod;
}
}
int main()
{
scanf("%s",s); n=strlen(s);
int len=1; while(len<(n<<1))len<<=1;
for(int i=0;i<n;i++) a[i].x=(s[i]=='a');
fft(a,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*a[i];
fft(a,len,-1);
for(int i=0;i<len;i++) c[i]=(int)(a[i].x+0.1),a[i]=cp();
for(int i=0;i<n;i++) a[i].x=(s[i]=='b');
fft(a,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*a[i];
fft(a,len,-1);
for(int i=0;i<len;i++) c[i]+=(int)(a[i].x+0.1);
manacher();
p[0]=1;
for(int i=1;i<len;i++) p[i]=(p[i-1]<<1)%mod;
for(int i=0;i<len;i++) ans=(ans+p[(c[i]+1)>>1]-1)%mod;
printf("%d\n",(ans+mod)%mod);
return 0;
}
小结:好题好题。比那个什么孤舟蓑笠翁友善多了。
这个题主要是需要想到求$f$数组。而且连续的话需要用$Manacher$减掉,非常好的一道题。
[bzoj3160]万径人踪灭_FFT_Manacher的更多相关文章
- BZOJ3160 万径人踪灭 字符串 多项式 Manachar FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列 ...
- BZOJ3160 万径人踪灭(FFT+manacher)
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...
- BZOJ3160万径人踪灭
Description Input & Output & Sample Input & Sample Output HINT 题解: 题意即求不连续但间隔长度对称的回文串个数. ...
- BZOJ3160: 万径人踪灭
设a[i]=bool(s[i]=='a'),b[i]=bool(s[i]=='b'),考虑a和a.b和b的卷积,由于卷积是对称的,就可以统计出不连续回文子串个数了.可能说得比较简略.再用manache ...
- bzoj千题计划302:bzoj3160: 万径人踪灭
https://www.lydsy.com/JudgeOnline/problem.php?id=3160 不连续的回文串数量=所有的回文序列数量-连续的回文子串 连续的回文子串: manacher ...
- BZOJ3160:万径人踪灭(FFT,Manacher)
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{ ...
- BZOJ3160 万径人踪灭 【fft + manacher】
题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\( ...
- BZOJ3160: 万径人踪灭(FFT,回文自动机)
BZOJ传送门: 解题思路: FFT在处理卷积时可以将自己与自己卷,在某一种字母上标1其他标0,做字符集次就好了. (回文就是直接对称可以联系偶函数定义理解,根据这个性质就可以将字符串反向实现字符串匹 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
随机推荐
- 死磕 java集合之终结篇
概览 我们先来看一看java中所有集合的类关系图. 这里面的类太多了,请放大看,如果放大还看不清,请再放大看,如果还是看不清,请放弃. 我们下面主要分成五个部分来逐个击破. List List中的元素 ...
- hihocoder offer收割编程练习赛12 A 歌德巴赫猜想
思路: 枚举. 实现: #include <iostream> #include <cstdio> #include <algorithm> using names ...
- applicationContext.getBean(“loginEntity”)
<!-- 指定Spring需要扫描的包,并将所有是别的类放到容器中,便于识别被注解的受托管bean --> <context:component-scan base-package= ...
- Android(java)学习笔记190:ContentProvider使用之学习ContentProvider(内容提供者)的目的
1. 使用ContentProvider,把应用程序私有的数据暴露给别的应用程序,让别的应用程序完成对自己私有的数据库数据的增删改查的操作. 2. ContentProvider的应用场景: 获取手机 ...
- Mysql基本操作、C++Mysql简单应用、PythonMysql简单应用
MySql基本操作 -- 当指定名称的数据库不存在时创建它并且指定使用的字符集和排序方式 CREATE DATABASE IF NOT EXISTS db_name CHARACTER SET UTF ...
- ALTER LANGUAGE - 修改一个过程语言的定义
SYNOPSIS ALTER LANGUAGE name RENAME TO newname DESCRIPTION 描述 ALTER LANGUAGE 修改一门语言的定义. 目前唯一的功能就是重命名 ...
- loadrunner 响应时间和TPS
例子:一个高速路有10个入口,每个入口每秒钟只能进1辆车 1.请问1秒钟最多能进几辆车? TPS=10 2.每辆车需要多长时间进行响应? reponse time = 1 3.改成20辆车 ...
- sql中递归查询
with AA as ( select * from tb_ClientBranch_Category where BRANCH_MOM_NAME='北京易华录信息技术股份有限公司' union al ...
- windows SDK创建一个窗体
#include <windows.h> /* Declare Windows procedure */ LRESULT CALLBACK WindowProcedure (HWND, U ...
- CAD参数绘制角度标注(网页版)
主要用到函数说明: _DMxDrawX::DrawDimAngular 绘制一个角度标注.详细说明如下: 参数 说明 DOUBLE dAngleVertexX 角度标注的顶点的X值 DOUBLE dA ...