BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
4 2
Sample Output
1
数据范围:
对于100%的数据,1 < = N , M < = 10000000
如果gcd(i,n)=1,那么gcd(i+n,1)=1。
于是答案=$\varphi (m!)*(n!)/(m!)$
=$\varphi(m!)/(m!) *(n!)$
于是前面那个设为f[m],这个可以线筛出来,同时推出逆元。
f[m]其实就是m以内所有的质数(p-1)/p乘起来,预处理即可。
代码:
#include <stdio.h>
#define LL long long
int prim[5000001],n,m,t,p,env[10000001],fac[10000001],f[10000001],cnt;
bool vis[10000001];
int main()
{
scanf("%d%d",&t,&p);
env[1]=1;
fac[0]=fac[1]=1;
f[1]=1;
for(int i=2;i<=10000000;i++)
{
if(i<=p)
env[i]=(p-p/i)*1ll*env[p%i]%p;
else
env[i]=env[i-p];
if(!vis[i])
{
if(env[i]%p!=0)
f[i]=1ll*f[i-1]*env[i]%p*(i-1)%p;
else
{
f[i]=1ll*f[i-1]*(i-1)%p;
}
prim[cnt++]=i;
}
else f[i]=f[i-1];
for(int j=0;j<cnt&&i*prim[j]<=10000000;j++)
{
vis[i*prim[j]]=1;
if(i%prim[j]==0)break;
}
if(i%p!=0)fac[i]=1ll*fac[i-1]*i%p;
else
{
int num=i;
while(num%p==0)num/=p;
fac[i]=fac[i-1]*num%p;
}
}
while(t--)
{
scanf("%d%d",&n,&m);
if(n>=p*2||(n>=p&&m<p))
{printf("0\n");continue;}
printf("%lld\n",1ll*f[m]*fac[n]%p);
}
}
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数的更多相关文章
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
随机推荐
- 取得mib oidname oid 对应关系表
snmptranslate -Tz -m ALL > d:\2.txt 取得所有名称与OID的对应表,很有用
- AC日记——栈 洛谷 P1044
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- 王垠:谈 Linux,Windows 和 Mac ( 2013)
这段时间受到很多人的来信.他们看了我很早以前写的推崇 Linux 的文章,想知道如何“抛弃 Windows,学习 Linux”.天知道他们在哪里找到那么老的文章,真是好事不出门…… 我觉得我有责任消除 ...
- T3137 栈练习1 codevs
codevs.cn/problem/3137 题目描述 Description 给定一个栈(初始为空,元素类型为整数,且小于等于100),只有两个操作:入栈和出栈.先给出这些操作,请输出最终栈的栈顶元 ...
- java中简单内存计算
今天面试遇到一个问题,假设一个类中只声明一个int类型,那么这个对象多大,这里先写出解决方案,首先引入内存计算工具lucene-core, <dependency> <groupId ...
- sql 添加自定义排序
Mysql : SELECT (@i:=@i+1) AS ind ,字段 FROM 表名 别名, (SELECT @i:=0) t WHERE `IsDeleted` = 0; Oracle: 本就有 ...
- [ACM] ZOJ 3725 Painting Storages (DP计数+组合)
Painting Storages Time Limit: 2 Seconds Memory Limit: 65536 KB There is a straight highway with ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- SQL server 数据存储过程
创建视图
- 子结点childNodes
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...