[bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
-
-
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
Solution
填昨天的坑
根据prufer定理,用排列组合推出ans=(n-2)!/[(D1-1)!(D2-1)!···(Dk-1)!left!] * m^left
其中left=(n-2)-(D1-1)-(D2-1)-···-(Dk-1)
哦,还要注意特判,当无解时,高精度数组长度为0,直接输出0就行了
PoPoQQQ的代码很优雅
Code:
#include <stdio.h>
#include <memory.h>
#define ll long long
struct num {
int top;
ll x[];
num(ll a=) {
memset(x,,sizeof x );
top=;
x[]=a; }
num operator*(const num b) {
num tmp;
for(int i=; i<=top; i++)
for(int j=; j<=b.top; j++)
tmp.x[i+j-]+=x[i]*b.x[j],
tmp.x[i+j]+=tmp.x[i+j-]/,
tmp.x[i+j-]%=;
tmp.top=top+b.top;
if(!tmp.x[tmp.top])
tmp.top--;
return tmp; } }ans();
void Q_pow(int x,int p) {
num tmp(x);
for(;p;p>>=,tmp=tmp*tmp)
if(p&)
ans=ans*tmp; }
int n,m,lef,cnt[];
void factorZ(int x,int d) {
for(int i=;i*i<=x;i++)
while(!(x%i))
cnt[i]+=d,
x/=i;
if(x^)cnt[x]+=d; }
int main() {
scanf("%d",&n);
lef=n-;
for(int i=;i<=lef;i++)
factorZ(i,);
for(int i=;i<=n;i++) {
int x;
scanf("%d",&x);
if(~x) {
if(x>) {
lef-=x-;
for(int i=;i<=x-;i++)
factorZ(i,-); } }
else ++m; }
for(int i=;i<=lef;i++)
factorZ(i,-);
factorZ(m,lef);
for(int i=;i<=n;i++)
if(cnt[i])
Q_pow(i,cnt[i]);
printf("%lld",ans.x[ans.top]);
for(int i=ans.top-;i;i--)
printf("%08lld",ans.x[i]);
return ; }
[bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)的更多相关文章
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
- BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- BZOJ 1005: [HNOI2008]明明的烦恼(高精度+prufer序)
传送门 解题思路 看到度数和生成树个树,可以想到\(prufer\)序,而一张规定度数的图的生成树个数为\(\frac{(n-2)!}{\prod\limits_{i=1}^n(d(i)-1)!}\) ...
- 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)
[BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...
- 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4981 Solved: 1941 Description ...
- [HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)
prufer序列 定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 描述 eg 将 ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
随机推荐
- 2-5 原生小程序 - 语法缺点.mp4
- 乐字节Java8核心特性之方法引用
大家好,我是乐字节的小乐,上一次我们说到了Java8核心特性之函数式接口,接下来我们继续了解Java8又一核心特性--方法引用. Java8 中引入方法引用新特性,用于简化应用对象方法的调用, 方法引 ...
- SpringBoot集成MybatisPlus解决Mapper文件修改后动态刷新的问题
很多人在使用SpringBoot集成Mybatis或者MybatisPlus的时候在查询复杂的情况下会写mapper文件,虽然说MyBatisPlus提供了常用的增删查改,但还是难以应付复杂的查询.关 ...
- 数据传递-------@PathVariable
package com.wh.handler; /** * 通过@PathVariable可以绑定占位符参数到方法参数中,例如 * @PathVariable("userId") ...
- tablespace monitor shell for windows
1. #! /bin/ksh #set -x SID=$1 ORACLE_SID=stat10gORACLE_HOME=/oracle10g/product/10.2PATH=$PATH:/usr/b ...
- 基于Web的Kafka管理器工具之Kafka-manager安装之后第一次进入web UI的初步配置(图文详解)
前期博客 基于Web的Kafka管理器工具之Kafka-manager的编译部署详细安装 (支持kafka0.8.0.9和0.10以后版本)(图文详解) 基于Web的Kafka管理器工具之Kafka- ...
- NHibernate3.2学习笔记
一.开发环境 数据库:SQLServer2008 编译器:VS2010 .Net版本:.Net Framework 4.0 二.涉及第三方程序集 NHibernate.dll:版本3.2 Iesi.C ...
- (二)Mybatis总结之通过Dao层与数据交互
Mybatis概述 定义: Mybatis是一个支持普通sql查询,存储过程和高级映射的优秀持久层框架. Mybatis是(半自动的)跟数据库打交道的orm(object relationship m ...
- 第四次团队作业——项目Alpha版本发布
这个作业属于哪个课程 <课程的链接> 这个作业要求在哪里 <作业要求的链接> 团队名称 Three cobblers 这个作业的目标 发布项目α版本,对项目进 ...
- Python学习日记之读取中文目录
unicode # -*- coding:utf-8 -*- import os import shutil ins="E:\\学习资料" dir=unicode(ins,'utf ...