洛谷 P1880 [NOI1995]石子合并
题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
4
4 5 9 4
43
54
解题思路:
一道环形DP,f[i][j]表示i到j这一段合并成一堆的最大值,f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + sum[i+1][j]) i<=k<j,对于环形的处理是把这个环复制,接到末尾,其中sum[i+1][j]表示a[i] + a[i+1] + .. + a[j].
AC代码:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,f1[][],f2[][],num[],maxans,minans = ,he[];//f1为最大值,f2为最小值
int max(int a,int b) {
if(a >= b) return a;
else return b;
}
int min(int a,int b) {
if(a <= b) return a;
else return b;
}
int main()
{
cin >> n;
memset(f2,0x7f7f7f,sizeof(f2));//将最小值初始位足够大
for(int i = ; i <= n; i++) {//读入
scanf("%d",&num[i]);
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int i = n+; i <= n+n; i++) {//将这个环复制一遍接到末尾
num[i] = num[i-n];
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int p = ; p < n; p++)//枚举区间长度
for(int i = , j = i + p; i < n + n && j < n + n; i++, j = i + p)//枚举起点和终点
for(int k = i; k < j; k++){//设置断点
f1[i][j] = max(f1[i][j], f1[i][k] + f1[k+][j] + he[j] - he[i-]);//状态转移
f2[i][j] = min(f2[i][j], f2[i][k] + f2[k+][j] + he[j] - he[i-]);//状态转移
} for(int i = ; i <= n; i++) {//找最大值和最小值
maxans = max(maxans,f1[i][i+n-]);
minans = min(minans,f2[i][i+n-]);
}
printf("%d\n%d",minans,maxans); return ;
}
洛谷 P1880 [NOI1995]石子合并的更多相关文章
- 洛谷 P1880 [NOI1995]石子合并 题解
P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]
题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...
- 洛谷 P1880 [NOI1995]石子合并(区间DP)
嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
随机推荐
- Servlet处理日期
以下内容引用自http://wiki.jikexueyuan.com/project/servlet/handling-date.html: 使用Servlet的最重要的优势之一是可以使用核心Java ...
- C# 图片识别(支持21种语言)转
来自:http://www.cnblogs.com/stone_w/archive/2011/10/08/2202397.html 图片识别的技术到几天已经很成熟了,只是相关的资料很少,为了方便在此汇 ...
- 2014-8-21的一次性能诊断--应用server瓶颈
今天现场实施反馈系统总体慢.已经接到用户许多的投诉,要求现场发回weblogic日志和Oracle 数据库报告.简要说下系统的架构:典型的B/S三层架构,开发语言是java,中间件用的是weblogi ...
- no matching function transform?
http://stackoverflow.com/questions/19876746/stdtolower-and-visual-studio-2013 http://forums.codeguru ...
- Django学习系列之CSRF
Django CSRF 什么是CSRF CSRF, Cross Site Request Forgery, 跨站点伪造请求.举例来讲,某个恶意的网站上有一个指向你的网站的链接,如果 某个用户已经登录到 ...
- Python学习系列之装饰器
装饰器的作用 装饰器用于装饰某个函数.方法或者类,它可以让这个函数执行之前或者执行之后做一些操作 手工实现一个装饰器 def outer(some_func): #装饰器 $1 def inner() ...
- kvc kvo 总结---180313
textField.placeholder = @"username is in here!"; [textField setValue:[UIColor redColor] fo ...
- has实现 更新视图但不重新加载页面原理
URL中#符号本身以及它的字符称之为hash,可以通过window.location.hash获取.hash具有如下特点: 1.has虽然出现在URL中,但不会被包括在http请求中.因此,改变has ...
- make常见报错原因分析
1 No rule to make target ‘xxx’ 原因一般是'xxx'文件不存在,首先应该去相应的目录检查文件是否存在.
- libjpeg交叉编译
下载libjpeg http://libjpeg.sourceforge.net/ 解压tar -zxf jpegsrc.v6b.tar.gz cd jpeg-6b cp /usr/bin/libto ...