BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】
题目
小A和小B又想到了一个新的游戏。
这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。
最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同。
小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子。
每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。
小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢?
输入格式
共一行,三个数,n,k,d。
输出格式
输出小A胜利的方案总数。答案对1000000007取模。
输入样例
10 4 2
输出样例
182
提示
1<=d<=k<=n<=10000, k为偶数,k<=100。
题解
同BZOJ3576小奇的博弈
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL f[17][maxn],C[maxn][105];
int n,K,d;
void init(){
for (int i = 0; i <= n; i++){
C[i][0] = 1;
for (int j = 1; j <= i && j <= K; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
int main(){
n = read(); K = read(); d = read();
init();
f[0][0] = 1;
for (LL i = 0; i <= 16; i++){
for (LL j = 0; j <= n - K; j++){
for (LL x = 0; x * (d + 1) <= K / 2 && x * (d + 1) * (1ll << i) + j <= n - K; x++)
f[i + 1][j + x * (d + 1) * (1ll << i)] = (f[i + 1][j + x * (d + 1) * (1ll << i)] + f[i][j] * C[K / 2][x * (d + 1)] % P) % P;
}
}
LL ans = 0;
for (LL i = 0; i <= n - K; i++) ans = (ans + f[16][i] * C[n - K - i + K / 2][K / 2]) % P;
printf("%lld\n",((C[n][K] - ans) % P + P) % P);
return 0;
}
BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】的更多相关文章
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- bzoj2281 [Sdoi2011]黑白棋
一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...
- BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)
传送门 解题思路 首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题 ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
随机推荐
- 利用python递归实现整数转换为字符串
def trans(num): if num // 10 == 0: return '%s'%num else: return trans(num//10)+'%s'%(num%10) a=trans ...
- nyoj-586-疯牛|poj-2456-Aggressive cows
http://acm.nyist.net/JudgeOnline/problem.php?pid=586 http://poj.org/problem?id=2456 解题思路:最大化最小值二分答案即 ...
- POI 读取 Excel 文件
import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; import java.io.Out ...
- Dubbo中的监控和管理
一.Dubbo中的监控 1.原理 原理:服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心. 2.搭建监控服务 3.修改配置文件 修改注册中心的地址: 注意:这个 ...
- shell脚本,怎么实现每次新开一个shell都输出一个提示语?
[root@localhost wyb]# cat test.sh echo -e "\033[32mhello,This is wangyuebo's shell\033[0m" ...
- Xcode及Mac快捷键
1. 文件 CMD + N: 新文件CMD + SHIFT + N: 新项目CMD + O: 打开CMD + S: 保存CMD + SHIFT + S: 另存为CMD + W: 关闭窗口CMD + S ...
- IE(IE6/IE7/IE8)支持HTML5标签--20150216
让IE(ie6/ie7/ie8)支持HTML5元素,我们需要在HTML头部添加以下JavaScript,这是一个简单的document.createElement声明,利用条件注释针对IE来调用这个j ...
- (12)zabbix agent 类型所有key
zabbix服务器端通过与zabbix agent通信来获取客户端服务器的数据,agent分为两个版本,其中一个是主动一个是被动,在配置主机我们可以看到一个是agent,另一个是agent(activ ...
- docker系列之网络配置
docker 网络配置 docker 安装后, 会自动在系统做一个网桥配置 docker0 . 其容器都会分配到此网桥配置下的独立, 私有 IP 地址. 如果你要自己配置桥接, 也可以把 docker ...
- LeetCode(90) Subsets II
题目 Given a collection of integers that might contain duplicates, nums, return all possible subsets. ...