【Beijing 2010】 次小生成树
【题目链接】
【算法】
首先,有一个结论 : 一定有一棵严格次小生成树是在最小生成树的基础上去掉一条边,再加上一条边
这个结论的正确性是显然的
我们先用kruskal算法求出最小生成树,然后,枚举不在最小生成树上的边,我们发现若加上这条边,
则形成了一个环,用最小生成树的权值和加上这条边的权值再减去在这个环上且在最小生成树上权值
最大的边即为包括这条边的最小生成树的权值和
那么,树上倍增可以解决这个问题
因为是要求严格最小,所以我们不仅要记录最大值,还要记录次大值
时间复杂度 : O((N+M)log(N))
【代码】
注意使用long long,INF开到10^18!
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100010
#define MAXM 300010
#define MAXLOG 20
const long long INF = 1e18; struct info
{
int x,y;
long long w;
} edge[MAXM];
struct Edge
{
int to;
long long w;
int nxt;
} e[MAXM<<]; int i,n,m,tot;
int fa[MAXN],head[MAXN],dep[MAXN],anc[MAXN][MAXLOG];
long long ans = INF,val;
long long mx[MAXN][MAXLOG],nx[MAXN][MAXLOG];
bool on_mst[MAXM]; inline bool cmp(info a,info b) { return a.w < b.w; }
inline int get_root(int x)
{
if (fa[x] == x) return x;
return fa[x] = get_root(fa[x]);
}
inline void add(int x,int y,int w)
{
tot++;
e[tot] = (Edge){y,w,head[x]};
head[x] = tot;
}
inline void kruskal()
{
int i,sx,sy;
long long x,y,w;
for (i = ; i <= n; i++) fa[i] = i;
for (i = ; i <= m; i++) on_mst[i] = false;
sort(edge+,edge+m+,cmp);
for (i = ; i <= m; i++)
{
x = edge[i].x;
y = edge[i].y;
w = edge[i].w;
sx = get_root(x);
sy = get_root(y);
if (sx != sy)
{
val += w;
fa[sx] = sy;
on_mst[i] = true;
add(x,y,w);
add(y,x,w);
}
}
}
inline void dfs_init(int u)
{
int i,v;
for (i = ; i < MAXLOG; i++)
{
if (dep[u] < ( << i)) break;
anc[u][i] = anc[anc[u][i-]][i-];
mx[u][i] = max(mx[u][i-],mx[anc[u][i-]][i-]);
if (mx[u][i-] == mx[anc[u][i-]][i-]) nx[u][i] = max(nx[u][i-],nx[anc[u][i-]][i-]);
else nx[u][i] = max(min(mx[u][i-],mx[anc[u][i-]][i-]),max(nx[u][i-],nx[anc[u][i-]][i-]));
}
for (i = head[u]; i; i = e[i].nxt)
{
v = e[i].to;
if (anc[u][] != v)
{
dep[v] = dep[u] + ;
anc[v][] = u;
mx[v][] = e[i].w;
dfs_init(v);
}
}
}
inline long long get(int x,int y,long long w)
{
int i,t;
long long ret = ;
if (dep[x] > dep[y]) swap(x,y);
t = dep[y] - dep[x];
for (i = ; i < MAXLOG; i++)
{
if (t & ( << i))
{
if (mx[y][i] == w) ret = max(ret,nx[y][i]);
else ret = max(ret,mx[y][i]);
y = anc[y][i];
}
}
if (x == y) return ret;
for (i = MAXLOG - ; i >= ; i--)
{
if (anc[x][i] != anc[y][i])
{
if (mx[x][i] == w) ret = max(ret,nx[x][i]);
else ret = max(ret,mx[x][i]);
if (mx[y][i] == w) ret = max(ret,nx[y][i]);
else ret = max(ret,mx[y][i]);
x = anc[x][i];
y = anc[y][i];
}
}
if (mx[x][] != w) ret = max(ret,mx[x][]);
if (mx[y][] != w) ret = max(ret,mx[y][]);
return ret;
}
int main()
{ scanf("%d%d",&n,&m);
for (i = ; i <= m; i++) scanf("%lld%lld%lld",&edge[i].x,&edge[i].y,&edge[i].w);
kruskal();
dfs_init();
for (i = ; i <= m; i++)
{
if (!on_mst[i])
ans = min(ans,val+edge[i].w-get(edge[i].x,edge[i].y,edge[i].w));
}
printf("%lld\n",ans); return ;
}
【Beijing 2010】 次小生成树的更多相关文章
- [BJOI 2010]次小生成树Tree
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...
- [Luogu P4180][BJWC 2010]严格次小生成树
严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的 ...
- 次小生成树(lca)
题目描述 原题来自:BeiJing 2010 组队赛 给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树. 设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- HDU-4081.Qinshihuang'sNationalRoadSystem(次小生成树变种)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081Qin Shi Huang's National Road System(次小生成树)
题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...
- POJ1679 The Unique MST[次小生成树]
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28673 Accepted: 10239 ...
- The Unique MST(次小生成树)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22335 Accepted: 7922 Description Give ...
随机推荐
- 谷歌应用商店chrome扩展程序和APP的发布流程
互联网上有很多大牛,他们再工作中需要一些难题,再找到解决办法后,如果会使用js的话,大多数人就可以自己动手写一个chrome插件,而且非常容易.开发人员都喜欢与大家分享自己的成就!google是一个全 ...
- scrapy实现全站抓取数据
1. scrapy.CrawlSpider scrapy框架提供了多种类型的spider,大致分为两类,一类为基本spider(scrapy.Spider),另一类为通用spider(scrapy.s ...
- list嵌套,int与str的用法,replace
#*************************replace(待改,改动值),返回很重要 A = [['libai',89]] A[0][0]=A[0][0].replace('a','af') ...
- hihoCode #1151 : 骨牌覆盖问题·二
#1151 : 骨牌覆盖问题·二 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一周我们研究了2xN的骨牌问题,这一 ...
- [luoguP2626] 斐波那契数列(升级版)(模拟)
传送门 模拟 代码 #include <cmath> #include <cstdio> #include <iostream> #define N 50 #def ...
- 前端开发:JQuery(2)& Bootstrap
JS事件流 事件的概念:HTML中与javascript交互是通过事件驱动来实现的,例如鼠标点击事件.页面的滚动事件onscroll等等,可以向文档或者文档中的元素添加事件侦听器来预订事件. 事件流: ...
- sql 日期问题从周转换到日期
alter procedure p_date@year int=2005, --年份@week int=33, --第几周@firstday datetime =null output, ...
- nyoj_758_分苹果
分苹果 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法? (注意:假如有3个盘子7 ...
- 静态区间第k大(归并树)
POJ 2104为例 思想: 利用归并排序的思想: 建树过程和归并排序类似,每个数列都是子树序列的合并与排序. 查询过程,如果所查询区间完全包含在当前区间中,则直接返回当前区间内小于所求数的元素个数, ...
- js转xml时 将xml中不需要的字符替换掉的方法replace()
js中 replace(/\//g, '') 什么作用. 正则表达式 replace(/\//g, '') 的作用是把/替换成''. 用法如下: 比如:var aa= "adsdd/sdsd ...