【题目链接】

点击打开链接

【算法】

首先,有一个结论 : 一定有一棵严格次小生成树是在最小生成树的基础上去掉一条边,再加上一条边

这个结论的正确性是显然的

我们先用kruskal算法求出最小生成树,然后,枚举不在最小生成树上的边,我们发现若加上这条边,

则形成了一个环,用最小生成树的权值和加上这条边的权值再减去在这个环上且在最小生成树上权值

最大的边即为包括这条边的最小生成树的权值和

那么,树上倍增可以解决这个问题

因为是要求严格最小,所以我们不仅要记录最大值,还要记录次大值

时间复杂度 : O((N+M)log(N))

【代码】

注意使用long long,INF开到10^18!

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100010
#define MAXM 300010
#define MAXLOG 20
const long long INF = 1e18; struct info
{
int x,y;
long long w;
} edge[MAXM];
struct Edge
{
int to;
long long w;
int nxt;
} e[MAXM<<]; int i,n,m,tot;
int fa[MAXN],head[MAXN],dep[MAXN],anc[MAXN][MAXLOG];
long long ans = INF,val;
long long mx[MAXN][MAXLOG],nx[MAXN][MAXLOG];
bool on_mst[MAXM]; inline bool cmp(info a,info b) { return a.w < b.w; }
inline int get_root(int x)
{
if (fa[x] == x) return x;
return fa[x] = get_root(fa[x]);
}
inline void add(int x,int y,int w)
{
tot++;
e[tot] = (Edge){y,w,head[x]};
head[x] = tot;
}
inline void kruskal()
{
int i,sx,sy;
long long x,y,w;
for (i = ; i <= n; i++) fa[i] = i;
for (i = ; i <= m; i++) on_mst[i] = false;
sort(edge+,edge+m+,cmp);
for (i = ; i <= m; i++)
{
x = edge[i].x;
y = edge[i].y;
w = edge[i].w;
sx = get_root(x);
sy = get_root(y);
if (sx != sy)
{
val += w;
fa[sx] = sy;
on_mst[i] = true;
add(x,y,w);
add(y,x,w);
}
}
}
inline void dfs_init(int u)
{
int i,v;
for (i = ; i < MAXLOG; i++)
{
if (dep[u] < ( << i)) break;
anc[u][i] = anc[anc[u][i-]][i-];
mx[u][i] = max(mx[u][i-],mx[anc[u][i-]][i-]);
if (mx[u][i-] == mx[anc[u][i-]][i-]) nx[u][i] = max(nx[u][i-],nx[anc[u][i-]][i-]);
else nx[u][i] = max(min(mx[u][i-],mx[anc[u][i-]][i-]),max(nx[u][i-],nx[anc[u][i-]][i-]));
}
for (i = head[u]; i; i = e[i].nxt)
{
v = e[i].to;
if (anc[u][] != v)
{
dep[v] = dep[u] + ;
anc[v][] = u;
mx[v][] = e[i].w;
dfs_init(v);
}
}
}
inline long long get(int x,int y,long long w)
{
int i,t;
long long ret = ;
if (dep[x] > dep[y]) swap(x,y);
t = dep[y] - dep[x];
for (i = ; i < MAXLOG; i++)
{
if (t & ( << i))
{
if (mx[y][i] == w) ret = max(ret,nx[y][i]);
else ret = max(ret,mx[y][i]);
y = anc[y][i];
}
}
if (x == y) return ret;
for (i = MAXLOG - ; i >= ; i--)
{
if (anc[x][i] != anc[y][i])
{
if (mx[x][i] == w) ret = max(ret,nx[x][i]);
else ret = max(ret,mx[x][i]);
if (mx[y][i] == w) ret = max(ret,nx[y][i]);
else ret = max(ret,mx[y][i]);
x = anc[x][i];
y = anc[y][i];
}
}
if (mx[x][] != w) ret = max(ret,mx[x][]);
if (mx[y][] != w) ret = max(ret,mx[y][]);
return ret;
}
int main()
{ scanf("%d%d",&n,&m);
for (i = ; i <= m; i++) scanf("%lld%lld%lld",&edge[i].x,&edge[i].y,&edge[i].w);
kruskal();
dfs_init();
for (i = ; i <= m; i++)
{
if (!on_mst[i])
ans = min(ans,val+edge[i].w-get(edge[i].x,edge[i].y,edge[i].w));
}
printf("%lld\n",ans); return ;
}

【Beijing 2010】 次小生成树的更多相关文章

  1. [BJOI 2010]次小生成树Tree

    Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...

  2. [Luogu P4180][BJWC 2010]严格次小生成树

    严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的 ...

  3. 次小生成树(lca)

    题目描述 原题来自:BeiJing 2010 组队赛 给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树. 设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  6. HDU-4081.Qinshihuang'sNationalRoadSystem(次小生成树变种)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  7. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  8. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  9. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

随机推荐

  1. Python中面向对象初识到进阶

    面向对象初识到进阶 # 面向对象结构: # class 类名: # def __init__(self,参数1,参数2): # self.对象的属性1 = 参数1 # self.对象的属性2 = 参数 ...

  2. 转载,Django组件

    知识预览 一 Django的form组件 二 Django的model form组件 三 Django的缓存机制 四 Django的信号 五 Django的序列化 回到顶部 一 Django的form ...

  3. 洛谷 1197 [JSOI2008]星球大战

    [题解] 把询问离线,倒着加点,并查集维护连通性即可. #include<cstdio> #include<cstring> #include<algorithm> ...

  4. [bzoj1078][SCOI2008][斜堆] (贪心)

    Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小.但斜堆不必是平衡的,每个结 ...

  5. 大数据平台消息流系统Kafka

    Kafka前世今生 随着大数据时代的到来,数据中蕴含的价值日益得到展现,仿佛一座待人挖掘的金矿,引来无数的掘金者.但随着数据量越来越大,如何实时准确地收集并分析如此大的数据成为摆在所有从业人员面前的难 ...

  6. 关于SQL Server 的限制

    经常被人问到关于SQL Server 的连接数限制, 或者最大的文件大小, 或者标准版和企业版的区别,以及Express上的 其实这些问题都可以在MSDN 上直接找到 SQL Server 2014 ...

  7. nyoj 96 n-1位数(处理前导 0 的情况)(string)

    n-1位数 时间限制:3000 ms  |            内存限制:65535 KB 难度:1   描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则 ...

  8. [luoguP1877] [HAOI2012]音量调节(DP)

    传送门 绝世傻DP #include <cstdio> #include <iostream> #define N 51 int n, s, mx; bool f[N][100 ...

  9. hdu 3038带权并查集

    #include<stdio.h> #include<string.h> #define N  200100 struct node { int x,count; }pre[N ...

  10. Vue 实例以及生命周期

    最简单的 Vue 实例 //html <div id="app"> {{message}} </div> //javascript var vm = new ...