WEASELTX code
给你一棵 n 个节点的有根树(节点),以及每个节点 i 的初始权值 a[i] 。
一次操作则是指将每个节点的权值变为以其为根的子树中所有节点的权值之异或和。
维护 q 个询问,每个询问则是问 T 次操作之后,根节点的权值。
解:
相关题目:HDU 6129 http://acm.hdu.edu.cn/showproblem.php?pid=6129
HDU 6129 是树退化成一条链的情形。

我们的做法依然是考虑每个节点对答案的贡献。
如果是求和,则 T 次操作之后,考虑每个节点 i 对答案的贡献,结果为
$$\sum_{i} \binom{T+d[i]-1}{d[i]} a[i],$$
其中 d[i] 是节点 i 的深度(根节点深度为 0 ),额外定义$\binom{-1}{0} = 1$。

而对于异或和,我们只需要考虑系数模 2 的余数即可,上式可变为
$$\bigoplus_{i} \left( \binom{T+d[i]-1}{d[i]} \bmod 2 \right) a[i].$$

剩下我们要考虑 $\binom{a+b}{b} \bmod 2 = 1$ 的充要条件。
由 Lucas 定理,可得 $\binom{a}{b} \bmod 2 = 1$ 当且仅当 $a \operatorname{and} b = b$ 。
从而,$\binom{a+b}{b} \bmod 2 = 1$ 当且仅当 $(a+b) \operatorname{and} b = b$ ,即$a \operatorname{and} b = 0$(不是那么显然,需要读者自行证一下)。

观察式子可以发现,设$2^k > \max_i \{d[i]\}$,则 $T$ 次操作后的结果与 $T \bmod 2^k$ 次操作后的结果相同。
因此我们可以只考虑 $0 \le T < 2^k$ 的情况。

注意到 $\binom{T+d[i]-1}{d[i]} \bmod 2 = 1$ 当且仅当 $(T-1) \operatorname{and} d[i] = 0$。
于是我们先把所有节点按照其深度分组,同一个深度的节点先合并在一块,因为他们在参与运算时一定是捆绑在一起的。
接着根据 $(T-1)$,我们依次枚举满足条件的 $d[i]$ ,这是一个经典的子集枚举,即枚举 ~(T-1) 的子集。
枚举 s 的子集的方式为

for (int x = s; x; x = (x-)&s)
{
// we have enumerated every x satisfying x&s = x.
}

由于 T 会取遍 $[0, 2^k)$ 之间的值,这样对每个 T 都枚举一遍子集的时间复杂度为 $O(3^k)$ (不是那么显然,需要读者自行证明)。
而 $k = O(\log n)$,于是,总的时间复杂度为 $ O(3^{\log n}) $。

Codechef WEASELTX的更多相关文章

  1. Codechef SEPT17

    Codechef SEPT17 比赛链接:https://www.codechef.com/SEPT17 CHEFSUM code给定数组 a[1..n] ,求最小的下标 i ,使得 prefixsu ...

  2. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  3. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

  4. codechef 两题

    前面做了这场比赛,感觉题目不错,放上来. A题目:对于数组A[],求A[U]&A[V]的最大值,因为数据弱,很多人直接排序再俩俩比较就过了. 其实这道题类似百度之星资格赛第三题XOR SUM, ...

  5. codechef January Challenge 2014 Sereja and Graph

    题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...

  6. BZOJ3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 85[Submit][St ...

  7. CodeChef CBAL

    题面: https://www.codechef.com/problems/CBAL 题解: 可以发现,我们关心的仅仅是每个字符出现次数的奇偶性,而且字符集大小仅有 26, 所以我们状态压缩,记 a[ ...

  8. CodeChef FNCS

    题面:https://www.codechef.com/problems/FNCS 题解: 我们考虑对 n 个函数进行分块,设块的大小为S. 每个块内我们维护当前其所有函数值的和,以及数组中每个元素对 ...

  9. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

随机推荐

  1. ,java反射机制实现拦截器

    实现一个拦截器必须要实现一下几个类: 1 目标类接口:目标类要实现的接口. package com.lanvis.reflect; public interface ITarget {     pub ...

  2. 优秀的数据序列和还原类----TSimpleMsgPack

    优秀的数据序列和还原类----TSimpleMsgPack TSimpleMsgPack是D10天地弦的作品. 优点:至简,就一个单元文件实现,不需要引用其他单元. 缺点:不是标准的MSGPACK实现 ...

  3. 【kotlin】kotlin中List中添加List怎么操作

    如题,List集合添加一个List集合怎么操作 如上,现在有了List<A>,A类中有个字段List<B>, 新创建一个List<B>,想把LIst<A> ...

  4. 【Lucene】具体解释Lucene全文检索的信息写入与读取

    Lucene的大致结构图: 信息写入索引库的过程: 读取信息的过程: 以下是一个向索引库写入信息与读取信息的样例: public void testCreateIndex() throws Excep ...

  5. [反汇编练习] 160个CrackMe之023

    [反汇编练习] 160个CrackMe之023. 本系列文章的目的是从一个没有任何经验的新手的角度(其实就是我自己),一步步尝试将160个CrackMe全部破解,如果可以,通过任何方式写出一个类似于注 ...

  6. Raspberry Pi学习笔记

    一.树莓派 Raspberry Pi 更换国内源 编辑 /etc/apt/sources.list 文件,用 nano 命令编辑 pi@raspberrypi:~$ sudo cp /etc/apt/ ...

  7. lua 异常 错误处理 pcall

    lua 错误处理 匿名函数 if pcall(function () local s=object.data[1]['type'] end) then return object.data[1]['t ...

  8. Java学习之String StringBuffer StringBuilder区别

    1.String:对象长度是不可变的,是线程安全. 2.StringBuffer:对象长度是可变的,是线程安全. 3.StringBuilder:对象长度是可变,不是线程安全.

  9. SVN系列之—-SVN版本回滚的办法

    例:SVN版本为:TortoiseSVN 1.9.7 一.SVN简介 subversion(简称svn)是一种跨平台的集中式版本控制工具,支持linux和windows. 版本控制解决了:*代码管理混 ...

  10. 【转载】5种网络IO模型

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出 ...