\(\mathcal{Description}\)

  Link.

  把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个;第 \(i\) 个人得到同种零食数量不超过 \(b_i\),总数量不超过 \(c_i\),求最多分出的零食数量。

  \(n,m\le2\times10^5\)。

\(\mathcal{Solution}\)

  很容易看出这是网络流模型:

  • 源点 \(S\) 连向每种零食 \(i\),容量 \(a_i\);
  • 零食 \(i\) 连向人 \(j\),容量 \(b_j\);
  • 人 \(j\) 连向汇点 \(T\),容量 \(c_j\)。

  答案即为 \(S\) 到 \(T\) 的最大流。

  在这样的网络中,我们发现容量的种类数少,而边数很多,可以推出边的容量与这条边具体连接两端结点的相关性不强。这种时候,可以尝试手算最小割。

  具体地,设零食集合 \(A\) 被割入 \(S\) 部,那么对于一个人 \(i\),他被割入 \(S\) 部的代价为 \(c_i\),被割入 \(T\) 部的代价是 \(|A|b_i\),我们应取两者较小值,而这果然与 \(A\) 集合具体构成不相关。所以,枚举 \(|A|\in[0,n]\),每个人一定在一段前缀中被割入 \(T\) 部,在其余情况被割入 \(S\) 部,利用单调性维护这一过程,做到复杂度 \(\mathcal O(n\log n+m\log m)\),两个瓶颈皆为排序。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; inline void chkmin( LL& a, const LL b ) { b < a && ( a = b ); } const int MAXN = 2e5;
int n, m, b[MAXN + 5], ord[MAXN + 5];
LL a[MAXN + 5], c[MAXN + 5]; int main() {
scanf( "%d %d", &n, &m );
rep ( i, 1, n ) scanf( "%lld", &a[i] );
rep ( i, 1, m ) scanf( "%d", &b[i] ), ord[i] = i;
rep ( i, 1, m ) scanf( "%lld", &c[i] ); std::sort( a + 1, a + n + 1,
[]( const LL u, const LL v ) { return u > v; } );
std::sort( ord + 1, ord + m + 1, []( const int u, const int v )
{ return 1ull * c[u] * b[v] < 1ull * c[v] * b[u]; } ); LL sa = 0, sb = 0, sc = 0, ans = 1ll << 60;
rep ( i, 1, n ) sa += a[i];
rep ( i, 1, m ) sb += b[i];
for ( int i = 0, j = 1; i <= n; ++i ) {
sa -= a[i];
for ( ; j <= m && 1ll * i * b[ord[j]] > c[ord[j]];
sb -= b[ord[j]], sc += c[ord[j++]] );
chkmin( ans, sa + i * sb + sc );
}
printf( "%lld\n", ans );
return 0;
}

Solution -「ARC 125E」Snack的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  3. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  4. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  5. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  6. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  7. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  8. Solution -「ARC 058C」「AT 1975」Iroha and Haiku

    \(\mathcal{Description}\)   Link.   称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...

  9. Solution -「ARC 101E」「AT 4352」Ribbons on Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...

随机推荐

  1. centos7.5上安装go1.13.4

    一.安装 1.下载go1.13.4.linux-amd64.tar.gz 先进入官网https://golang.google.cn/ 再 https://golang.google.cn/doc/i ...

  2. Limiting Command Size

    Next: Controlling Parallelism, Previous: Unusual Characters in File Names, Up: Multiple Files [Conte ...

  3. css 垂直居中技巧

    CSS垂直居中技巧,我只会23个,你会几个?自古以来(是有多?~),网页CSS的垂直居中需求始终没有停过,而其困难度也始终没有让人轻松过,经过了每位开发先烈的研究后,据说CSS的垂直居中技巧已达到近十 ...

  4. 简单的树莓派4b装64位系统+docker和docker-compose

    起因是这样的,我系统崩了 事先准备 wifi或网线 树莓派和电源 内存卡和读卡器 首先是装系统 去https://downloads.raspberrypi.org/raspios_arm64/ima ...

  5. 【笔记】论文阅读:《Gorilla: 一个快速, 可扩展的, 内存式时序数据库》

    英文:Gorilla: A fast, scalable, in-memory time series database 中文:Gorilla: 一个快速, 可扩展的, 内存式时序数据库

  6. Activity Fragment Service生命周期图

    service的生命周期,从它被创建开始,到它被销毁为止,可以有两条不同的路径: A started service 被开启的service通过其他组件调用 startService()被创建. 这种 ...

  7. gorm链接mysql的初始化配置和连接池的使用

    1.  mysql的初始化配置 dsn := fmt.Sprintf("%s:%s@tcp(%s:%d)/%s?%s", user, passwd, host, port, db, ...

  8. 返回值ModelAndView

  9. MIME类型说明(HTTP协议中数据类型)

    MIME(HTTP协议中数据类型) MIME:多功能Internet邮件扩充服务.MIME类型的格式是"大类型/小类型",并与某一种文件的扩展名相对应. 常见的MIME类型: RT ...

  10. 机器学习-softmax回归 python实现

    ---恢复内容开始--- Softmax Regression 可以看做是 LR 算法在多分类上的推广,即类标签 y 的取值大于或者等于 2. 假设数据样本集为:$\left \{ \left ( X ...