传送门

考场上打了两个小时树剖,结果还是没搞出来

发现对于两个确定的点,它们一定可以列出一个方程来

其中系数的大小和正负只与这两点间距离的奇偶性有关

所以可以加一堆分情况讨论然后树剖

至于正解:

考虑两点之间的关系很麻烦,可以固定一个基准点,把它们都用 \(x_1\) 表示出来

  • 当需要极其麻烦地考虑两点之间的关系时,考虑固定一个基准点分别表示它们

发现这样的话对一个点的修改等价于把它的子树整体加上一个数

所以可以建立dfs序,直接树状数组维护,同样根据奇偶性判无解

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 1000010
#define ll long long
//#define int long long char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n, q;
int head[N], size, in[N], out[N], tot, val[N], dep[N], lim;
ll a[N<<1], b[N<<1];
struct edge{int to, next;}e[N];
inline void add(int s, int t) {e[++size].to=t; e[size].next=head[s]; head[s]=size;}
inline void upd(ll* a, int i, ll dat) {for (; i<=lim; i+=i&-i) a[i]+=dat;}
inline ll query(ll* a, int i) {ll ans=0; for (; i; i-=i&-i) ans+=a[i]; return ans;} void dfs(int u) {
in[u]=++tot;
upd(a, in[u], (dep[u]&1?-1:1)*val[u]);
upd(b, in[u], (dep[u]&1?1:-1)*val[u]);
for (int i=head[u]; ~i; i=e[i].next) dep[e[i].to]=dep[u]+1, dfs(e[i].to);
out[u]=++tot;
upd(a, out[u], (dep[u]&1?1:-1)*val[u]);
upd(b, out[u], (dep[u]&1?-1:1)*val[u]);
} signed main()
{
memset(head, -1, sizeof(head));
ll w; n=read(); q=read(); lim=n*2;
for (int i=2,u,w; i<=n; ++i) {
u=read(); w=read();
add(u, i); val[i]=w;
}
dep[1]=1; dfs(1);
for (int i=1,u,v,s,dlt; i<=q; ++i) {
if (read()&1) {
u=read(); v=read(); s=read();
//cout<<"uv: "<<u<<' '<<v<<endl;
w=query(dep[u]&1?b:a, in[u])+query(dep[v]&1?b:a, in[v])-s;
//cout<<"w: "<<w<<' '<<query(dep[u]&1?b:a, in[u])<<' '<<query(dep[v]&1?b:a, in[v])<<endl;
if (w&1) puts("none");
else if ((dep[u]&1?1:0)^(dep[v]&1?1:0)) puts(!w?"inf":"none");
else printf("%lld\n", (((dep[u]&1)&&(dep[v]&1))?-1:1)*(w>>1));
}
else {
u=read(); w=read();
dlt=w-val[u];
upd(a, in[u], (dep[u]&1?-1:1)*dlt);
upd(b, in[u], (dep[u]&1?1:-1)*dlt);
upd(a, out[u], (dep[u]&1?1:-1)*dlt);
upd(b, out[u], (dep[u]&1?-1:1)*dlt);
val[u]=w;
}
} return 0;
}

题解 Equation的更多相关文章

  1. [NOIP10.6模拟赛]2.equation题解--DFS序+线段树

    题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86 ...

  2. Hdoj 2199.Can you solve this equation? 题解

    Problem Description Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solutio ...

  3. The equation (扩展欧几里得)题解

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer r ...

  4. Codeforces Little Dima and Equation 数学题解

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. csp-s模拟测试56Merchant, Equation,Rectangle题解

    题面:https://www.cnblogs.com/Juve/articles/11619002.html merchant: 二分答案,贪心选前m大的 但是用sort复杂度不优,会T掉 我们只是找 ...

  6. 2019牛客多校第九场B Quadratic equation(二次剩余定理)题解

    题意: 传送门 已知\(0 <= x <= y < p, p = 1e9 + 7\)且有 \((x+y) = b\mod p\) \((x\times y)=c\mod p\) 求解 ...

  7. CF20B Equation 题解

    Content 解方程 \(ax^2+bx+c=0\). 数据范围:\(-10^5\leqslant a,b,c\leqslant 10^5\). Solution 很明显上求根公式. 先来给大家推推 ...

  8. CF460B Little Dima and Equation (水题?

    Codeforces Round #262 (Div. 2) B B - Little Dima and Equation B. Little Dima and Equation time limit ...

  9. 《ACM国际大学生程序设计竞赛题解Ⅰ》——基础编程题

    这个专栏开始介绍一些<ACM国际大学生程序设计竞赛题解>上的竞赛题目,读者可以配合zju/poj/uva的在线测评系统提交代码(今天zoj貌似崩了). 其实看书名也能看出来这本书的思路,就 ...

随机推荐

  1. 查找----python

    class Solution: #顺序查找 def seq_search(self,list,num): for i in(range(len(list))): if list[i] == num: ...

  2. GO系列-ini文件处理

    gopkg.in/ini.v1 配置加载 创建一个空的配置 cfg := ini.Empty() 直接加载存在的配置文件,如果文件不存在就会报错 cfg, err := ini.Load(" ...

  3. DNS配置【正向解析】

    DNS配置.正向解析                一.BIND域名服务基础                  1)DNS的定义                  2)域名结构             ...

  4. gpasswd简单记录

    gpasswd [option] GROUP 一切都是为了权限 gpasswd常用参数: -a, --add  USER 将user用户加入到组中 -d, --delete  USER 将user用户 ...

  5. MySQL -- 表联结

    创建联结:(使用WHERE联结)SELECTvend_name,prod_name,prod_priceFROMvendors,productsWHEREvendors.vend_id=product ...

  6. 单细胞分析实录(18): 基于CellPhoneDB的细胞通讯分析及可视化 (上篇)

    细胞通讯分析可以给我们一些细胞类群之间相互调控/交流的信息,这种细胞之间的调控主要是通过受配体结合,传递信号来实现的.不同的分化.疾病过程,可能存在特异的细胞通讯关系,因此阐明这些通讯关系至关重要. ...

  7. CentOS7创建个人系统启动服务项的方法

    CentOS7.6自定义系统启动项的方法(类似busybox里面的inittab)1.编写属于自己的unit服务文件,命令为my.service[Unit]Description=My-demo Se ...

  8. PAT乙级:1061 判断题 (15分)

    PAT乙级:1061 判断题 (15分) 题干 判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 ...

  9. SSM框架中mapper层,增删改查,如何实现

    1.批量修改 <!-- 批量修改 MySQL--> <update id="updateBatch" parameterType="java.lang. ...

  10. Ubuntu Server连接Wi-Fi

    本文将介绍Ubuntu Server如何通过命令行使用wpa_supplicant连接Wi-Fi 环境 Ubuntu Server 20.04(64位) wpasupplicant 配置 1. 安装 ...