题解

一个纯的贪心,被我搞成 \(dp\) 了,最后把错解删掉了,骗了 \(10pts\)

考虑如何贪心,设置一种二元组 \((x,l)\),\(x\) 表示当前值,\(l\) 表示当前最长连续长度。

按上述所说设置两个二元组 \(up,down\);\(up\) 表示 \(x\) 为当前最大值,\(down\) 则相反

转移时分情况:

  1. 当前 \(num_i\) 为零,直接贪心转移

  2. 当前 \(num_i\) 不为零,若贪心转以后 \(down\) 的值大于 \(num_i\) 或 \(up\) 的值小于 \(sum_i\),无解

那么对于求整个序列,倒着扫一遍,记录一个 \(vis\) 数组记当前值出现的个数,\(num_i=\min(num_{i+1},up_i.x)\),若求出来的数已经有五个了,则减 \(1\)。

证明:

若 \(num_i=num_{i+1}\) 那么 \(up_i.x>num_{i+1}\) 且当前序列一定有合法解,则 \(num_i\) 一定等于 \(num_{i+1}-=[vis[num_{i+1}]=5]\)

另一情况同理

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
typedef long long ll;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=2e5+7;
struct node{int x,l;}up[N],down[N];
int num[N],vist[N],n;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n;p(i)) read(num[i]);
if (num[1]>1) {puts("-1");return 0;}
up[1].l=down[1].l=up[1].x=down[1].x=num[1]=1;
for (ri i(2);i<=n;p(i)) {
if (up[i-1].l==2) up[i].x=up[i-1].x+1,up[i].l=1;
else up[i].x=up[i-1].x,up[i].l=up[i-1].l+1;
if (down[i-1].l==5) down[i].x=down[i-1].x+1,down[i].l=1;
else down[i].x=down[i-1].x,down[i].l=down[i-1].l+1;
if (num[i]) {
if (down[i].x>num[i]||up[i].x<num[i]) {puts("-1");return 0;}
if (down[i].x<num[i]) down[i].x=num[i],down[i].l=1;
if (up[i].x>num[i]) up[i].x=num[i],up[i].l=2;
}
}
num[n]=up[n].x=(up[n].l==2)?up[n].x:up[n].x-1;
vist[num[n]]=1;
printf("%d\n",up[n].x);
for (ri i(n-1);i;--i) {
if (!num[i]) {
int w=cmin(up[i].x,num[i+1]);
if (vist[w]==5) --w;
num[i]=w;
}
p(vist[num[i]]);
}
for (ri i(1);i<=n;p(i)) printf("%d ",num[i]);
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $12\; \text{简单的填数}$的更多相关文章

  1. NOIP 模拟 $12\; \text{简单的玄学}$

    题解 有些难度 对于 \(30pts\) 直接暴力 对于 \(70pts\) 发现规律 \(2^n-a\) 与 \(a\;\;(a\in [1,2^n))\) 分解质因数后,\(2\) 的次数相同 \ ...

  2. NOIP 模拟 $12\; \text{简单的区间}$

    题解 签到题 求区间和为 \(k\) 的倍数的区间,我们可以转化为求左右两个端点,其前缀和相等 对于区间最大值,我们可以把其转化为一个值,它能向左,向右扩展的最远边界,一个单调栈即可 我们设一个值 \ ...

  3. noip模拟12[简单的区间·简单的玄学·简单的填数]

    noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\( ...

  4. [JZOJ 5811] 简单的填数

    题意:自己搜吧... 思路: 记二元组\((x,l)\)表示当前为\(x\)且之前有\(l\)个连续数与\(x\)相同. 并且维护up和low数组表示取到最大/最小值时,连续序列的长度. 正一遍,反一 ...

  5. NOIP模拟测试「简单的区间·简单的玄学·简单的填数·简单的序列」

    简单的区间 $update$ 终于$AC$了 找到$(sum[r]+sum[l](sum表示以中间点为基准的sum)-mx)\%k==0$的点 注意这里$sum$表示是以$mid$为基准点,(即$su ...

  6. (译文)12个简单(但强大)的JavaScript技巧(二)

    原文链接: 12 Simple (Yet Powerful) JavaScript Tips 其他链接: (译文)12个简单(但强大)的JavaScript技巧(一) 强大的立即调用函数表达式 (什么 ...

  7. (译文)12个简单(但强大)的JavaScript技巧(一)

    原文连接: 12 Simple (Yet Powerful) JavaScript Tips 我将会介绍和解析12个简单但是强大的JavaScript技巧. 这些技巧所有的JavaScript程序员都 ...

  8. <蛇形填数>--算法竞赛 入门经典(第2版)- 3.1 数组 程序3-3 蛇形填数

     蛇形填数: 在n×n方阵里填入1,2,....,n×n,要求填成蛇形.例如,n = 4 时方阵为:    10  11  12  1   9  16  13  2 8  15  14  3 7   ...

  9. ACM_螺旋填数

    螺旋填数 Time Limit: 2000/1000ms (Java/Others) Problem Description: 一天,小明在研究蜗牛的壳时,对其螺旋状的花纹感到十分有趣.于是他回到了家 ...

随机推荐

  1. EF Core3.1 CodeFirst动态自动添加表和字段的描述信息

    前言 我又来啦.. 本篇主要记录如何针对CodeFirst做自动添加描述的扩展 为什么要用这个呢.. 因为EF Core3.1 CodeFirst 对于自动添加描述这块 只有少部分的数据库支持.. 然 ...

  2. Django基础-001

    一.开发模式 MVC模式: model:数据库 view:前端展示 controller:逻辑控制MTV模式 model:数据库 view:逻辑控制 template:前端展示 二.Django介绍 ...

  3. FTP传输

    FTP传输                    一.FTP服务–用来传输文件的协议                    二.设置匿名用户访问的FTP服务(最大权限)                 ...

  4. 关于高校表白App的NABCD项目分析

    N(Need,需求) 首先,针对本校男多女少 的具体情况,为广大本校大学生提供一个更加宽广的平台: 其次,针对当前各高校均有校园表白墙的实际情况,各表白墙难以整合在一起,使得信息不够集中的现状,我们小 ...

  5. JProfiler监控java应用使用情况,故障情况分析

    1.软件部署(java环境已提前准备) 服务器:centos7.4 https://download-gcdn.ej-technologies.com/jprofiler/jprofiler_linu ...

  6. pycharm基础使用入门

    pycharm基础使用入门 输出 print函数 print('hello world') 右键选择run或者右上角的三角形运行,可以运行出结果 "E:\all sorts of learn ...

  7. 【并查集模板】并查集模板 luogu-3367

    题目描述 简单的并查集模板 输入描述 第一行包含两个整数N.M,表示共有N个元素和M个操作. 接下来M行,每行包含三个整数Zi.Xi.Yi 当Zi=1时,将Xi与Yi所在的集合合并 当Zi=2时,输出 ...

  8. [BSidesCF 2020]Had a bad day 1--PHP伪协议

    首先先打开主页,审查代码,并没有什么特别的地方使用dirsearch,发现flag.php![在这里插入图片描述](https://img-blog.csdnimg.cn/82348deddfd94c ...

  9. LUSE: 无监督数据预训练短文本编码模型

    LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...

  10. 深入刨析tomcat 之---第14篇 对应19章,使用manager管理 web应用

    writedby 张艳涛 第19章讲的是管理程序,当一个tomcat启动的时候,能通过远程浏览器能访问tomcat,启动web应用,关闭web应用,查看web应用 怎么实现的呢? 在webapp 文件 ...