NOIP 模拟 $27\; \rm 牛半仙的妹子图$
题解 \(by\;zj\varphi\)
颜色数很少,考虑枚举颜色数。
建出来一棵最小生成树,可以证明在最小生成树上,一个点到另一个点的路径上的最大权值最小(易证,考虑 \(\rm kruskal\) 的原理)。
在最小生成树上 \(dfs\) 一遍,求出到达每种颜色的最小权值,询问时枚举每种颜色即可。
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++;
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=5e5+7;
int c[N],first[N],fa[N],dis[N],vis[N],st[N],cnt,t=1,n,m,q,opt,x,MOD;
ll ans;
struct edge{int v,nxt,w;}I[N],e[N<<1];
inline void add(int u,int v,int w) {
e[t].v=v,e[t].w=w,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].w=w,e[t].nxt=first[v],first[v]=t++;
}
inline int operator<(const edge &e1,const edge &e2) {return e1.w<e2.w;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
inline void kruskal() {
sort(I+1,I+m+1);
for (ri i(1);i<=n;p(i)) fa[i]=i;
for (ri i(1);i<=m;p(i)) {
int u=I[i].v,v=I[i].nxt,w=I[i].w;
if (find(u)==find(v)) continue;
fa[find(u)]=v;
add(u,v,w);
}
}
void dfs(int x,int fa,int mx) {
dis[c[x]]=cmin(dis[c[x]],mx);
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa) continue;
dfs(v,x,cmax(mx,e[i].w));
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n),read(m),read(q),read(x),read(opt);
if (opt) read(MOD);
for (ri i(1);i<=n;p(i)) {
read(c[i]);
if (!vis[c[i]]) vis[c[i]]=1,st[p(cnt)]=c[i];
}
for (ri i(1);i<=m;p(i)) read(I[i].v),read(I[i].nxt),read(I[i].w);
kruskal();
memset(dis,127,sizeof(dis));
dfs(x,0,0);
for (ri i(1);i<=q;p(i)) {
register ll l,r;
read(l),read(r);
if (opt) {
(l^=ans)%=MOD,(r^=ans)%=MOD;
l+=1,r+=1;
if (l>r) swap(l,r);
}
ans=0;
for (ri j(1);j<=cnt;p(j)) {
if (dis[st[j]]<=l) ans+=r-l+1;
else if (dis[st[j]]<=r) ans+=r-dis[st[j]]+1;
}
print(ans,'\n');
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $27\; \rm 牛半仙的妹子图$的更多相关文章
- NOIP 模拟 $27\; \rm 牛半仙的妹子Tree$
题解 \(by\;zj\varphi\) 很妙的虚树题. 考虑若没有操作 \(2\),那么直接记录一下扩散到它的最短时间和询问时间相比即可,可以当作一个树上最短路. 有 \(2\) 操作怎么办,将操作 ...
- NOIP 模拟 $27\; \rm 牛半仙的妹子序列$
题解 \(by\;zj\varphi\) 明显一道极长上升子序列的题. 直接线段树维护单调栈,最后单调栈求出可以贡献的序列,答案相加就行. Code #include<bits/stdc++.h ...
- 2020牛客NOIP赛前集训营-提高组(第三场) C - 牛半仙的妹子Tree (树链剖分)
昨天教练问我:你用树剖做这道题,怎么全部清空状态呢? 我:???不是懒标记就完了??? 教练:树剖不是要建很多棵线段树吗,不止log个,你要一个一个清? 我:为什么要建很多棵线段树? ...
- 7.29考试总结(NOIP模拟27)[牛半仙的妹子图·Tree·序列]
前言 从思路上来讲是比较成功的,从分数上就比较令人失望了. 考场上是想到了前两个题的正解思路,其实最后一个题是半个原题,只可惜是我看不懂题... 这波呀,这波又是 语文素养限制OI水平.. 改题的时候 ...
- 2021.7.29考试总结[NOIP模拟27]
T1 牛半仙的妹子图 做法挺多的,可以最小生成树或者最短路,复杂度O(cq),c是颜色数. 我考场上想到了原来做过的一道题影子,就用了并查集,把边权排序后一个个插入,记录权值的前缀和,复杂度mlogm ...
- noip模拟27[妹子图·腿·腰](fengwu半仙的妹子们)
\(noip模拟27\;solutions\) 这次吧,我本来以为我能切掉两个题,结果呢??只切掉了一个 不过,隔壁Varuxn也以为能切两个,可惜了,他一个都没切...... 确实他分比我高一点,但 ...
- 2020牛客NOIP赛前集训营-提高组(第三场)C-牛半仙的妹子Tree【虚树,最短路】
正题 题目链接:https://ac.nowcoder.com/acm/contest/7609/C 题目大意 给出\(n\)个点的一棵树,\(m\)个时刻各有一个操作 标记一个点,每个点被标记后的每 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
随机推荐
- rz上传文件报错:rpm Read Signature failed: sigh blob(1268): BAD, read returned 0
上传文件报错: [root@www localdisk]# rpm -ivh cobbler* error: cobbler-2.8.4-4.el7.x86_64.rpm: rpm Read Si ...
- Shell循环语句for、while、until
Shell循环语句for.while.until 一.条件测试 二.删除字符 三.循环语句 示例1 ...
- python pandas inplace参数
'''pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改 inplace = True:不创建新的对象,直接对原始对象进行修改: inplace ...
- 基于FPGA的图像镜像
图像镜像,一种较为常见的图像处理操作,分为水平镜像.垂直镜像.对角镜像.水平镜像即处理后的图像与原图像关于垂直线对称,垂直镜像为处理后的图像与 原图像关于水平线对称,对角镜像则关于对角线对称. 关于低 ...
- Python中字典get方法的使用技巧
get方法,用于获取字典中某个键值key 对应value的值,此方法可以接收两个参数,第一个参数传入key的值,第二个参数用于传入一个自定义返回值,如果查询的key在字典中存在,就会反回对应key在字 ...
- Greenplum安装总结
Greenplum安装总结 一.环境说明 服务器centos7 4台,一台Master节点,三台Segment节点: mdw 192.168.43.21 (master节点) sdw1 192.168 ...
- 使用idea,GitHub时,push和clone出现的一些问题
使用idea,GitHub时,push和clone出现的一些问题 报错:No anonymous write access 这个的原因是在idea记住的用户名和GitHub登录的不一样,导致报错.笔者 ...
- P3643 [APIO2016]划艇
P3643 [APIO2016]划艇 题意 一个合法序列可表示为一个长度为 \(n\) 的序列,其中第 \(i\) 个数可以为 0 或 \([l_i,r_i]\) 中一个整数,且满足所有不为零的数组成 ...
- YsoSerial 工具常用Payload分析之CC5、6(三)
前言 这是common-collections 反序列化的第三篇文章,这次分析利用链CC5和CC6,先看下Ysoserial CC5 payload: public BadAttributeValue ...
- 开发工具IDE从入门到爱不释手(三)运行与调试
一.启动项目 右键运行 菜单运行 run窗口运行 启动参数 -D可覆盖,application.properties中的配置 如: 自动编译 二.调试项目 断点调试 蓝色背景的行,就是当前程序停住的行 ...