Codeforces 848D - Shake It!(DP)
hot tea 一道。
首先我们考虑这个奇奇怪怪的最小割有什么等价的表达。不难发现,如果我们选择了 \(S\to T\) 这条边并加入了一个新的节点 \(u\),那么就会出现两条边 \(S\to u,u\to T\)。我们考虑把 \(S\) 和 \(u\) 分别当作新的源点和汇点重复上面的过程,假设 \(S\to u\) 产生的流量为 \(f_1\),我们再把 \(u,T\) 也分别当作新的源汇并产生 \(f_2\) 的流量,那么新产生的这个节点 \(u\) 对原图的最小割,即最大流产生了 \(\min(f_1,f_2)\) 的贡献。也就是说,当我们选择 \(S\to T\) 这条边并新添了一个点 \(u\),就等价于将原问题拆成了 \(S\to u\) 和 \(u\to T\) 两个子问题求解,这就天然地形成了 DP 的模型。
考虑 \(f_{n,m}\) 表示对于一张初始只有 \(S,T\) 两个点和一条边 \(S\to T\) 的图进行 \(n\) 次操作后能够得到多少张最小割为 \(m\) 的图,再设 \(g_{n,m}\) 表示对于一张初始有三个点 \(S,T,u\) 和两条边 \(S\to u\) 和 \(u\to T\) 的图在进行 \(n-1\) 次操作后可以得到多少个最小割为 \(m\) 的图,转移就考虑对 \(S\to u\) 长出的子图和 \(u\to T\) 长出的子图分别进行了多少次操作,设为 \(k\) 和 \(n-1-k\),那么转移就是一个 \(\min\) 卷积的形式,即 \(g_{n,m}=\sum\limits_{k=0}^{n-1}\sum\limits_{\min(x,y)=m}f_{k,x}f_{n-1-k,y}\),众所周知,\(\min\) 卷积可以通过处理后缀和做到线性,即假设 \(sf_{n,m}\) 为 \(f_{n,m}\) 的后缀和,\(sg_{n,m}\) 也同理,那么 \(sg_{n,m}=\sum\limits_{k=0}^{n-1}sf_{k,m}sf_{n-1-k,m}\),再一遍差分即可求出真正的 \(g\)。这样我们就实现了 \(f\to g\)。
接下来考虑怎样 \(g\to f\),方便起见,我们将所有 \(S\to u,u\to T\) 进行 \(n-1\) 次操作得到的最小割为 \(m\) 的图称作一个“\((n,m)\) 结构”,将所有 \((n,m)\) 结构的总体称作“\((n,m)\) 类”,那么我们考虑一个背包的思想,考虑所有 \((i,j)\) 类对 \(f_{n,m}\) 的贡献,那么我们枚举用了多少个 \((i,j)\) 类中的结构,设为 \(k\),那么有转移 \(f_{n,m}\leftarrow f_{n-ki,m-kj}·\dbinom{g_{i,j}+k-1}{k}\),其中后面那个组合数可以用隔板法来解释,具体来说就是设 \((i,j)\) 类第 \(t\) 个结构出现了 \(x_t\) 次,那么由于“经过置换得到的图视为相同”这一条件的存在,一组 \((x_1,x_2,\cdots,x_{g_{i,j}})\) 就能唯一确定一张图,方案数就是 \(x_1+x_2+\cdots+x_{g_{i,j}}=k\) 的解的个数,根据隔板法可知该值等于 \(\dbinom{g_{i,j}+k-1}{k}\)。
还有一个小问题就是 DP 转移的顺序,如果我们不钦定 DP 转移的顺序就会算重。因此我们考虑从小到大枚举 \(i\) 再从小到大枚举 \(j\),算出 \(g_{i,j}\) 之后再用多重背包的方式松弛所有 \(f_{n,m}\),不难发现这样我们肯定会按照 \((i,j)\) 这样的二元组的字典序顺序进行多重背包,也就不会担心算重的问题了。这就有点类似于子集卷积那种“半在线”的感觉,学过子集卷积/半在线卷积的应该会比较好理解。
时间复杂度上界大概是 \(n^4\ln n\),因为后面枚举 \(k\) 那一维复杂度大概是调和级数的。
const int MAXN=50;
const int MOD=1e9+7;
int n,m,f[MAXN+5][MAXN+5],sf[MAXN+5][MAXN+5],g[MAXN+5][MAXN+5],sg[MAXN+5][MAXN+5];
int inv[MAXN+5];
int main(){
scanf("%d%d",&n,&m);f[0][1]=sf[0][1]=1;
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++){
for(int j=1;j<=n+1;j++) for(int k=0;k<=i-1;k++)
sg[i][j]=(sg[i][j]+1ll*sf[k][j]*sf[i-1-k][j])%MOD;
for(int j=1;j<=n+1;j++) g[i][j]=(sg[i][j]-sg[i][j+1]+MOD)%MOD;
// for(int j=1;j<=n+1;j++) printf("g %d %d %d\n",i,j,g[i][j]);
for(int j=1;j<=n+1;j++){
for(int k=n+1;k;k--) for(int l=n+1;l;l--){
int mul=1;
for(int t=1;t*i<=k&&t*j<=l;t++){
mul=1ll*mul*(g[i][j]+t-1)%MOD*inv[t]%MOD;
f[k][l]=(f[k][l]+1ll*f[k-t*i][l-t*j]*mul)%MOD;
}
}
}
for(int j=n+1;j;j--) sf[i][j]=(sf[i][j+1]+f[i][j])%MOD;
} printf("%d\n",f[n][m]);
return 0;
}
Codeforces 848D - Shake It!(DP)的更多相关文章
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 1051 D.Bicolorings(DP)
Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...
- Codeforces 1207C Gas Pipeline (dp)
题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...
- Codeforces 704C - Black Widow(dp)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...
- Codeforces 682B New Skateboard(DP)
题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...
- Codeforces 543D Road Improvement(DP)
题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...
- Codeforces 543C Remembering Strings(DP)
题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...
随机推荐
- 使用ShardingSphere-JDBC完成Mysql的分库分表和读写分离
1. 概述 老话说的好:选择比努力更重要,如果选错了道路,就很难成功. 言归正传,之前我们聊了使用 MyCat 实现Mysql的分库分表和读写分离,MyCat是服务端的代理,使用MyCat的好处显而易 ...
- 如果你还不知道Apache Zookeeper?你凭什么拿大厂Offer!!
很多同学或多或少都用到了Zookeeper,并知道它能实现两个功能 配置中心,实现表分片规则的统一配置管理 注册中心,实现sharding-proxy节点的服务地址注册 那么Zookeeper到底是什 ...
- TCP 拥塞窗口原理
学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小(这个字段越大说明网络吞吐量越高),从而控制发送方的发送速度. 拥塞 ...
- error: unsupported reloc 43
在Ubuntu 16.04.5 LTS编译android 5.1报错 [19:17:13.062]libnativehelper/JniInvocation.cpp:165: error: unsup ...
- PCIe知识摘要记录
摘: 一. 在PCIe的Spec中,并没有特别详细的关于Root Complex的定义,从实际的角度来讲,可以把Root Complex理解为CPU与PCIe总线系统通信的媒介.Endpoint处于P ...
- 数组中出现次数超过一半的数字 牛客网 剑指Offer
数组中出现次数超过一半的数字 牛客网 剑指Offer 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字 ...
- hdu 1159 Common Subsequence(最长公共子序列,DP)
题意: 两个字符串,判断最长公共子序列的长度. 思路: 直接看代码,,注意边界处理 代码: char s1[505], s2[505]; int dp[505][505]; int main(){ w ...
- Java之父 James Gosling 发表博文 《Too Soon》纪念乔布斯。
几个礼拜前,我们还在讨论乔布斯的辞职.虽然我们都知道这意味着什么,但是我没有想到一切来的如此之快.已经有很多关于这件事情的文章了,特别是"经济学人"的这篇文章. 乔布斯是一个很独特 ...
- 从零开始,无DNS vcenter 6.7 vmotion热迁移,存储集群部署文档。
1,环境准备 准备:Vmware workstation环境 IP地址段规划 ESXI主机IP地址段 192.168.197.4-192.168.197.10 Vcenter Server集群IP地址 ...
- jQuery淡入淡出效果
如果是通过鼠标点击事件来触发动画效果可以使用 $("#button").click(function(){ $("#div").stop().fadeToggl ...