Codeforces 题面传送门 & 洛谷题面传送门

hot tea 一道。

首先我们考虑这个奇奇怪怪的最小割有什么等价的表达。不难发现,如果我们选择了 \(S\to T\) 这条边并加入了一个新的节点 \(u\),那么就会出现两条边 \(S\to u,u\to T\)。我们考虑把 \(S\) 和 \(u\) 分别当作新的源点和汇点重复上面的过程,假设 \(S\to u\) 产生的流量为 \(f_1\),我们再把 \(u,T\) 也分别当作新的源汇并产生 \(f_2\) 的流量,那么新产生的这个节点 \(u\) 对原图的最小割,即最大流产生了 \(\min(f_1,f_2)\) 的贡献。也就是说,当我们选择 \(S\to T\) 这条边并新添了一个点 \(u\),就等价于将原问题拆成了 \(S\to u\) 和 \(u\to T\) 两个子问题求解,这就天然地形成了 DP 的模型。

考虑 \(f_{n,m}\)​​ 表示对于一张初始只有 \(S,T\)​​ 两个点和一条边 \(S\to T\)​​ 的图进行 \(n\)​​​ 次操作后能够得到多少张最小割为 \(m\)​​ 的图,再设 \(g_{n,m}\)​​ 表示对于一张初始有三个点 \(S,T,u\)​​ 和两条边 \(S\to u\)​​ 和 \(u\to T\)​​ 的图在进行 \(n-1\)​​ 次操作后可以得到多少个最小割为 \(m\)​​ 的图,转移就考虑对 \(S\to u\)​​ 长出的子图和 \(u\to T\)​​ 长出的子图分别进行了多少次操作,设为 \(k\)​ 和 \(n-1-k\)​,那么转移就是一个 \(\min\)​ 卷积的形式,即 \(g_{n,m}=\sum\limits_{k=0}^{n-1}\sum\limits_{\min(x,y)=m}f_{k,x}f_{n-1-k,y}\)​,众所周知,\(\min\)​ 卷积可以通过处理后缀和做到线性,即假设 \(sf_{n,m}\)​ 为 \(f_{n,m}\)​ 的后缀和,\(sg_{n,m}\)​ 也同理,那么 \(sg_{n,m}=\sum\limits_{k=0}^{n-1}sf_{k,m}sf_{n-1-k,m}\)​,再一遍差分即可求出真正的 \(g\)。这样我们就实现了 \(f\to g\)​。

接下来考虑怎样 \(g\to f\),方便起见,我们将所有 \(S\to u,u\to T\) 进行 \(n-1\) 次操作得到的最小割为 \(m\) 的图称作一个“\((n,m)\) 结构”,将所有 \((n,m)\) 结构的总体称作“\((n,m)\) 类”,那么我们考虑一个背包的思想,考虑所有 \((i,j)\) 类对 \(f_{n,m}\) 的贡献,那么我们枚举用了多少个 \((i,j)\) 类中的结构,设为 \(k\),那么有转移 \(f_{n,m}\leftarrow f_{n-ki,m-kj}·\dbinom{g_{i,j}+k-1}{k}\),其中后面那个组合数可以用隔板法来解释,具体来说就是设 \((i,j)\) 类第 \(t\) 个结构出现了 \(x_t\) 次,那么由于“经过置换得到的图视为相同”这一条件的存在,一组 \((x_1,x_2,\cdots,x_{g_{i,j}})\) 就能唯一确定一张图,方案数就是 \(x_1+x_2+\cdots+x_{g_{i,j}}=k\) 的解的个数,根据隔板法可知该值等于 \(\dbinom{g_{i,j}+k-1}{k}\)。

还有一个小问题就是 DP 转移的顺序,如果我们不钦定 DP 转移的顺序就会算重。因此我们考虑从小到大枚举 \(i\) 再从小到大枚举 \(j\),算出 \(g_{i,j}\) 之后再用多重背包的方式松弛所有 \(f_{n,m}\),不难发现这样我们肯定会按照 \((i,j)\) 这样的二元组的字典序顺序进行多重背包,也就不会担心算重的问题了。这就有点类似于子集卷积那种“半在线”的感觉,学过子集卷积/半在线卷积的应该会比较好理解。

时间复杂度上界大概是 \(n^4\ln n\),因为后面枚举 \(k\) 那一维复杂度大概是调和级数的。

const int MAXN=50;
const int MOD=1e9+7;
int n,m,f[MAXN+5][MAXN+5],sf[MAXN+5][MAXN+5],g[MAXN+5][MAXN+5],sg[MAXN+5][MAXN+5];
int inv[MAXN+5];
int main(){
scanf("%d%d",&n,&m);f[0][1]=sf[0][1]=1;
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++){
for(int j=1;j<=n+1;j++) for(int k=0;k<=i-1;k++)
sg[i][j]=(sg[i][j]+1ll*sf[k][j]*sf[i-1-k][j])%MOD;
for(int j=1;j<=n+1;j++) g[i][j]=(sg[i][j]-sg[i][j+1]+MOD)%MOD;
// for(int j=1;j<=n+1;j++) printf("g %d %d %d\n",i,j,g[i][j]);
for(int j=1;j<=n+1;j++){
for(int k=n+1;k;k--) for(int l=n+1;l;l--){
int mul=1;
for(int t=1;t*i<=k&&t*j<=l;t++){
mul=1ll*mul*(g[i][j]+t-1)%MOD*inv[t]%MOD;
f[k][l]=(f[k][l]+1ll*f[k-t*i][l-t*j]*mul)%MOD;
}
}
}
for(int j=n+1;j;j--) sf[i][j]=(sf[i][j+1]+f[i][j])%MOD;
} printf("%d\n",f[n][m]);
return 0;
}

Codeforces 848D - Shake It!(DP)的更多相关文章

  1. Codeforces Gym101341K:Competitions(DP)

    http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...

  2. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  3. codeforces#1154F. Shovels Shop (dp)

    题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...

  4. Codeforces 1051 D.Bicolorings(DP)

    Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...

  5. Codeforces 1207C Gas Pipeline (dp)

    题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...

  6. Codeforces 704C - Black Widow(dp)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...

  7. Codeforces 682B New Skateboard(DP)

    题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...

  8. Codeforces 543D Road Improvement(DP)

    题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...

  9. Codeforces 543C Remembering Strings(DP)

    题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...

随机推荐

  1. 微服务网关Ocelot加入IdentityServer4鉴权-.NetCore(.NET5)中使用

    Consul+Ocelot+Polly在.NetCore中使用(.NET5)-Consul服务注册,服务发现 Consul+Ocelot+Polly在.NetCore中使用(.NET5)-网关Ocel ...

  2. 初学Python-day10 函数2

    函数 1.函数也是一种数据 函数也是一种数据,可以使用变量保存 回调函数(参数的值还是一个函数) 实例: def test(): print('hello world') def test1(a): ...

  3. relativeLayout相对布局的嵌套在py中的引用

    from kivy.app import App from kivy.uix.button import Button from kivy.uix.relativelayout import Rela ...

  4. 记录自己的踩坑第一天 | CSS:vertical-align 属性

    前言 最近老师让大家单独写前后端分离项目,真是大家卷完后端,一起去卷前端了.(我以前都是主要负责后端,处于只大致看的懂的级别,说多了都是泪啊). 真是处于一边学一边写的状态,基本就是每天早上看上两~三 ...

  5. SpringCloud概念

    SpringCloud概述 1.SpringCloud是什么? 官方解释:  官网: https://spring.io/projects/spring-cloud/  SpringCloud是一系列 ...

  6. 腾讯发布 K8s 多集群管理开源项目 Clusternet

    11月4日,在腾讯数字生态大会上,腾讯宣布了云原生领域一项重磅开源进展-- K8s 多集群管理项目 Clusternet 正式开源. Clusternet 由腾讯联合多点生活.QQ音乐.富途证券.微众 ...

  7. Java8新特性Stream流应用示例

    Java8新特性介绍 过滤集合 List<String> newList = list.stream().filter(item -> item != null).collect(C ...

  8. 子查询 & 联合查询

    子查询 嵌套在其他语句内部的select语句称为子查询或内查询,外层的语句可以是insert.update.delete.select等,一般select作为外层语句较多.外面如果为select语句, ...

  9. 《手把手教你》系列技巧篇(四十)-java+ selenium自动化测试-JavaScript的调用执行-下篇(详解教程)

    1.简介 在实际工作中,我们需要对处理的元素进行高亮显示,或者有时候为了看清楚做跟踪鼠标点击了哪些元素需要标记出来.今天宏哥就在这里把这种测试场景讲解和分享一下. 2.用法 创建一个执行 JS 的对象 ...

  10. Apache Shiro 反序列化漏洞分析

    Shiro550 环境搭建 参考:https://www.cnblogs.com/twosmi1e/p/14279403.html 使用Docker vulhub中的环境 docker cp 将容器内 ...