Codeforces 848D - Shake It!(DP)
hot tea 一道。
首先我们考虑这个奇奇怪怪的最小割有什么等价的表达。不难发现,如果我们选择了 \(S\to T\) 这条边并加入了一个新的节点 \(u\),那么就会出现两条边 \(S\to u,u\to T\)。我们考虑把 \(S\) 和 \(u\) 分别当作新的源点和汇点重复上面的过程,假设 \(S\to u\) 产生的流量为 \(f_1\),我们再把 \(u,T\) 也分别当作新的源汇并产生 \(f_2\) 的流量,那么新产生的这个节点 \(u\) 对原图的最小割,即最大流产生了 \(\min(f_1,f_2)\) 的贡献。也就是说,当我们选择 \(S\to T\) 这条边并新添了一个点 \(u\),就等价于将原问题拆成了 \(S\to u\) 和 \(u\to T\) 两个子问题求解,这就天然地形成了 DP 的模型。
考虑 \(f_{n,m}\) 表示对于一张初始只有 \(S,T\) 两个点和一条边 \(S\to T\) 的图进行 \(n\) 次操作后能够得到多少张最小割为 \(m\) 的图,再设 \(g_{n,m}\) 表示对于一张初始有三个点 \(S,T,u\) 和两条边 \(S\to u\) 和 \(u\to T\) 的图在进行 \(n-1\) 次操作后可以得到多少个最小割为 \(m\) 的图,转移就考虑对 \(S\to u\) 长出的子图和 \(u\to T\) 长出的子图分别进行了多少次操作,设为 \(k\) 和 \(n-1-k\),那么转移就是一个 \(\min\) 卷积的形式,即 \(g_{n,m}=\sum\limits_{k=0}^{n-1}\sum\limits_{\min(x,y)=m}f_{k,x}f_{n-1-k,y}\),众所周知,\(\min\) 卷积可以通过处理后缀和做到线性,即假设 \(sf_{n,m}\) 为 \(f_{n,m}\) 的后缀和,\(sg_{n,m}\) 也同理,那么 \(sg_{n,m}=\sum\limits_{k=0}^{n-1}sf_{k,m}sf_{n-1-k,m}\),再一遍差分即可求出真正的 \(g\)。这样我们就实现了 \(f\to g\)。
接下来考虑怎样 \(g\to f\),方便起见,我们将所有 \(S\to u,u\to T\) 进行 \(n-1\) 次操作得到的最小割为 \(m\) 的图称作一个“\((n,m)\) 结构”,将所有 \((n,m)\) 结构的总体称作“\((n,m)\) 类”,那么我们考虑一个背包的思想,考虑所有 \((i,j)\) 类对 \(f_{n,m}\) 的贡献,那么我们枚举用了多少个 \((i,j)\) 类中的结构,设为 \(k\),那么有转移 \(f_{n,m}\leftarrow f_{n-ki,m-kj}·\dbinom{g_{i,j}+k-1}{k}\),其中后面那个组合数可以用隔板法来解释,具体来说就是设 \((i,j)\) 类第 \(t\) 个结构出现了 \(x_t\) 次,那么由于“经过置换得到的图视为相同”这一条件的存在,一组 \((x_1,x_2,\cdots,x_{g_{i,j}})\) 就能唯一确定一张图,方案数就是 \(x_1+x_2+\cdots+x_{g_{i,j}}=k\) 的解的个数,根据隔板法可知该值等于 \(\dbinom{g_{i,j}+k-1}{k}\)。
还有一个小问题就是 DP 转移的顺序,如果我们不钦定 DP 转移的顺序就会算重。因此我们考虑从小到大枚举 \(i\) 再从小到大枚举 \(j\),算出 \(g_{i,j}\) 之后再用多重背包的方式松弛所有 \(f_{n,m}\),不难发现这样我们肯定会按照 \((i,j)\) 这样的二元组的字典序顺序进行多重背包,也就不会担心算重的问题了。这就有点类似于子集卷积那种“半在线”的感觉,学过子集卷积/半在线卷积的应该会比较好理解。
时间复杂度上界大概是 \(n^4\ln n\),因为后面枚举 \(k\) 那一维复杂度大概是调和级数的。
const int MAXN=50;
const int MOD=1e9+7;
int n,m,f[MAXN+5][MAXN+5],sf[MAXN+5][MAXN+5],g[MAXN+5][MAXN+5],sg[MAXN+5][MAXN+5];
int inv[MAXN+5];
int main(){
scanf("%d%d",&n,&m);f[0][1]=sf[0][1]=1;
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++){
for(int j=1;j<=n+1;j++) for(int k=0;k<=i-1;k++)
sg[i][j]=(sg[i][j]+1ll*sf[k][j]*sf[i-1-k][j])%MOD;
for(int j=1;j<=n+1;j++) g[i][j]=(sg[i][j]-sg[i][j+1]+MOD)%MOD;
// for(int j=1;j<=n+1;j++) printf("g %d %d %d\n",i,j,g[i][j]);
for(int j=1;j<=n+1;j++){
for(int k=n+1;k;k--) for(int l=n+1;l;l--){
int mul=1;
for(int t=1;t*i<=k&&t*j<=l;t++){
mul=1ll*mul*(g[i][j]+t-1)%MOD*inv[t]%MOD;
f[k][l]=(f[k][l]+1ll*f[k-t*i][l-t*j]*mul)%MOD;
}
}
}
for(int j=n+1;j;j--) sf[i][j]=(sf[i][j+1]+f[i][j])%MOD;
} printf("%d\n",f[n][m]);
return 0;
}
Codeforces 848D - Shake It!(DP)的更多相关文章
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 1051 D.Bicolorings(DP)
Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...
- Codeforces 1207C Gas Pipeline (dp)
题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...
- Codeforces 704C - Black Widow(dp)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...
- Codeforces 682B New Skateboard(DP)
题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...
- Codeforces 543D Road Improvement(DP)
题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...
- Codeforces 543C Remembering Strings(DP)
题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...
随机推荐
- 2021能源PWN wp
babyshellcode 这题考无write泄露,write被沙盒禁用时,可以考虑延时盲注的方式获得flag,此exp可作为此类型题目模版,只需要修改部分参数即可,详细见注释 from pwn im ...
- 基于Apache Hudi 的CDC数据入湖
作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Ca ...
- 面试题系列:new String("abc")创建了几个对象
new String("abc")创建了几个对象 面试官考察点猜想 这种问题,考察你对JVM的理解程度.涉及到常量池.对象内存分配等问题. 涉及背景知识详解 在分析这个问题之前,我 ...
- Spring DeferredResult 异步请求
Spring DeferredResult 异步请求 一.背景 二.分析 三.实现要求 四.后端代码实现 五.运行结果 1.超时操作 2.正常操作 六.DeferredResult运行原理 六.注意事 ...
- FastAPI 学习之路(二十八)使用密码和 Bearer 的简单 OAuth2
OAuth2 规定在使用(我们打算用的)「password 流程」时,客户端/用户必须将 username 和 password 字段作为表单数据发送.我们看下在我们应该去如何实现呢. 我们写一个登录 ...
- 学习手册 | MySQL篇 · 其一
InnoDB关键特性 插入缓冲(Insert Buffer) 问题: 在InnoDB插入的时候,由于记录通常都是按照插入顺序,也就是主键的顺序进行插入的,因此,插入聚集索引是顺序的,不需要随机IO ...
- 2021.8.16考试总结[NOIP模拟41]
T1 你相信引力吗 肯定是单调栈维护.但存在重复值,还是个环,不好搞. 发现取区间时不会越过最大值,因此以最大值为断点将环断为序列.在栈里维护当前栈中有多少个与当前元素相等的元素,小分类讨论一下. 最 ...
- [LGP2758]编辑距离
目录 题目 题目描述 输入格式 输出格式 输入输出样例 题目分析 状态转移方程 初始状态 结束状态 Code 题目 题目描述 设A和B是两个字符串.我们要用最少的字符操作次数,将字符串A转换为字符串B ...
- 旋转数组的最小数字 牛客网 剑指Offer
旋转数组的最小数字 牛客网 剑指Offer 题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...
- filter tools
// 过滤商品分类 Vue.filter("cateFilter", (data) => { let tmp = ["一级分类", "二级分 ...