题面传送门

记 \(mxi\) 为 IOI 国海拔的最大值,\(mni\) 为 IOI 国海拔的最小值,\(mxj\) 为 JOI 国海拔的最大值,\(mnj\) 为 JOI 国海拔的最小值。

不难发现 \(mxi,mni,mxj,mnj\) 中有 2 个值已经确定下来了,\(\max(mxi,mxj)\) 一定等于矩阵的全局最大值 \(mx\),\(\min(mni,mnj)\) 一定等于矩阵的全局最小值 \(mn\)。

如果我们把海拔最高和最低的点分配到了同一个国家中,答案即为 \(mx-mn\)。

如果我们把海拔最高和最低的点分配到了不同的国家中,我们不妨假设海拔最高的点分配到了 JOI 国,海拔最低的点分配到了 IOI 国。

二分答案。

假设二分到 \(mid\),那么所有 IOI 国的城市的海拔 \(\leq mn+mid\),所有 JOI 国的城市的海拔 \(\geq mx-mid\)。

也就是所有海拔 \(>mn+mid\) 的城市全部属于 JOI 国,所有海拔 \(<mx-mid\) 的城市全部属于 IOI 国。

此时题目转化为:已知某些点属于 IOI 国,某些点属于 JOI 国,判断是否存在一种合法的分配方案。

根据题意两国的地形一定呈阶梯分部。所以可以分出四种情况,这里以 JOI 国占据左上角,IOI 国占据右下角为例。

考虑第 \(i\) 两国之间的分界线 \(b_i\),那么一定有 \(b_i \leq b_{i-1}\),而第 \(i\) 行 \(b_i\) 左边肯定都是 JOI 国的城市,第 \(i\) 行右边肯定都是 IOI 国的城市,根据这个你可以求出 \(b_i\) 的最大值和最小值,然后判断是否有交集即可。

#include <bits/stdc++.h>
using namespace std;
const int MAXN=2e3+5;
int n,m,a[MAXN][MAXN],mx=0,mn=0x3f3f3f3f;
int l[MAXN],r[MAXN];
bool check(int mid){
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
bool flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) mx=max(mx,a[i][j]),mn=min(mn,a[i][j]);
int l=0,r=mx-mn-1,ans=mx-mn;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
} printf("%d\n",ans);
return 0;
}

Atcoder 2444 - JOIOI 王国(二分)的更多相关文章

  1. JOIOI王国 - 二分+贪心

    题面 题解 通过一句经典的话"最大值的最小值" 我判断它是二分题, 不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线. 而且,越到后来它的最大值只会越来越大,最 ...

  2. 「JOI 2017 Final」JOIOI 王国

    「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 【2018.9.20】JOI 2017 Final T3「JOIOI 王国 / The Kingdom of JOIOI」

    题目链接 题目描述 JOIOI 王国是一个 $H$ 行 $W$ 列的长方形网格,每个 $1\times 1$ 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 $JOI ...

  5. Atcoder D - Widespread (二分)

    题目链接:http://abc063.contest.atcoder.jp/tasks/arc075_b 题解:直接二分答案然后再判断(a-b)来替代不足的.看代码比较好理解,水题. #include ...

  6. AtCoder AGC032E Modulo Pairing (二分、贪心与结论)

    题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...

  7. AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)

    Problem Statement You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN. There ...

  8. loj#2334 「JOI 2017 Final」JOIOI 王国

    分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace s ...

  9. The Accomodation of Students HDU - 2444(判断二分图 + 二分匹配)

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

随机推荐

  1. perl Encode模块的使用

    编码问题是广泛存在的,只有正确的编码才能在不同的地方正确的显示内容.而在数据的获取和转移过程中,编码经常是很需要注意的问题.perl有功能很好的编码处理模块Encode.在程序里简单的use Enco ...

  2. 从零到熟悉,带你掌握Python len() 函数的使用

    摘要:本文为你带来如何找到长度内置数据类型的使用len() 使用len()与第三方数据类型 提供用于支持len()与用户定义的类. 本文分享自华为云社区<在 Python 中使用 len() 函 ...

  3. 【Java虚拟机6】Java内存模型(Java篇)

    什么是Java内存模型 <Java虚拟机规范>中曾试图定义一种"Java内存模型"(Java Memory Model,JMM)来屏蔽各种硬件和操作系统的内存访问差异, ...

  4. django-admin和django-admin.py的区别

    问题 django初学者在使用django-admin创建项目时容易出现无法创建的错误,这是因为网上很多教程用的都是django-admin.py创建的项目,不出意外的话,你输入相同的命令会发现项目没 ...

  5. vue3.x相对于vue2.x生命周期改动

    vue3.x已经正式发布了,部分小伙伴已经用了vue3.x开发,部分小伙伴还在观望中,下面是两个影响比较大的改动 1.beforeDestroy和destroyed不能用了. 这个应该是vue2.x项 ...

  6. 21.6.4 test

    \(NOI\) 模拟赛 太离谱了,碳基生物心态极限 \(T1\),字符串滚出OI,最后想了个区间dp,期望得分32pts,实际得分0pts,不知为啥挂了.正解是没学过的SAM. \(T2\),正解博弈 ...

  7. hdu 1394 Minimum Inversion Number(线段树or树状数组)

    题意: 给你N个数,N个数是0~N-1的一个全排列. 要求统计它的所有形式的逆序对的最小值.它的所有形式的意思是,不断将数组开头的第一个数放到数组的最后面. 逆序对:i<j且ai>aj 思 ...

  8. dotnet OpenXML 转换 PathFillModeValues 为颜色特效

    在 OpenXml 预设形状,有一些形状设置了 PathFillModeValues 枚举,此枚举提供了亮暗的蒙层特效.具体的特效是让形状选择一个画刷,在画刷上加上特效.如立体几何 Cube 形状,在 ...

  9. 几十行js实现很炫的canvas交互特效

    几十行js实现很炫的canvas交互特效 废话不多说,先上效果图! 本篇文章的示例代码都是抄的一个叫Franks的老外在yutube上的一个教学视频,他还出了很多关于canvas的视频,十分值得学习, ...

  10. CURD系统怎么做出技术含量--怎样引导面试

    引子 很多朋友可能会因为自己做的工作不是特别核心或者业务简单而引起面试中没有自信.但是很多公司面试的时候是可以接受面试者之前岗位的并发量.交易量低一些的.比如我们要招聘和我们交易量同等级或者以上的出来 ...