Atcoder 2444 - JOIOI 王国(二分)
记 \(mxi\) 为 IOI 国海拔的最大值,\(mni\) 为 IOI 国海拔的最小值,\(mxj\) 为 JOI 国海拔的最大值,\(mnj\) 为 JOI 国海拔的最小值。
不难发现 \(mxi,mni,mxj,mnj\) 中有 2 个值已经确定下来了,\(\max(mxi,mxj)\) 一定等于矩阵的全局最大值 \(mx\),\(\min(mni,mnj)\) 一定等于矩阵的全局最小值 \(mn\)。
如果我们把海拔最高和最低的点分配到了同一个国家中,答案即为 \(mx-mn\)。
如果我们把海拔最高和最低的点分配到了不同的国家中,我们不妨假设海拔最高的点分配到了 JOI 国,海拔最低的点分配到了 IOI 国。
二分答案。
假设二分到 \(mid\),那么所有 IOI 国的城市的海拔 \(\leq mn+mid\),所有 JOI 国的城市的海拔 \(\geq mx-mid\)。
也就是所有海拔 \(>mn+mid\) 的城市全部属于 JOI 国,所有海拔 \(<mx-mid\) 的城市全部属于 IOI 国。
此时题目转化为:已知某些点属于 IOI 国,某些点属于 JOI 国,判断是否存在一种合法的分配方案。
根据题意两国的地形一定呈阶梯分部。所以可以分出四种情况,这里以 JOI 国占据左上角,IOI 国占据右下角为例。
考虑第 \(i\) 两国之间的分界线 \(b_i\),那么一定有 \(b_i \leq b_{i-1}\),而第 \(i\) 行 \(b_i\) 左边肯定都是 JOI 国的城市,第 \(i\) 行右边肯定都是 IOI 国的城市,根据这个你可以求出 \(b_i\) 的最大值和最小值,然后判断是否有交集即可。
#include <bits/stdc++.h>
using namespace std;
const int MAXN=2e3+5;
int n,m,a[MAXN][MAXN],mx=0,mn=0x3f3f3f3f;
int l[MAXN],r[MAXN];
bool check(int mid){
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
bool flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) mx=max(mx,a[i][j]),mn=min(mn,a[i][j]);
int l=0,r=mx-mn-1,ans=mx-mn;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
} printf("%d\n",ans);
return 0;
}
Atcoder 2444 - JOIOI 王国(二分)的更多相关文章
- JOIOI王国 - 二分+贪心
题面 题解 通过一句经典的话"最大值的最小值" 我判断它是二分题, 不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线. 而且,越到后来它的最大值只会越来越大,最 ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 【2018.9.20】JOI 2017 Final T3「JOIOI 王国 / The Kingdom of JOIOI」
题目链接 题目描述 JOIOI 王国是一个 $H$ 行 $W$ 列的长方形网格,每个 $1\times 1$ 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 $JOI ...
- Atcoder D - Widespread (二分)
题目链接:http://abc063.contest.atcoder.jp/tasks/arc075_b 题解:直接二分答案然后再判断(a-b)来替代不足的.看代码比较好理解,水题. #include ...
- AtCoder AGC032E Modulo Pairing (二分、贪心与结论)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...
- AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)
Problem Statement You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN. There ...
- loj#2334 「JOI 2017 Final」JOIOI 王国
分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace s ...
- The Accomodation of Students HDU - 2444(判断二分图 + 二分匹配)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 【UE4 设计模式】原型模式 Prototype Pattern
概述 描述 使用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象.如孙悟空猴毛分身.鸣人影之分身.剑光分化.无限剑制 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象, ...
- 【数据结构与算法Python版学习笔记】图——基本概念及相关术语
概念 图Graph是比树更为一般的结构, 也是由节点和边构成 实际上树是一种具有特殊性质的图 图可以用来表示现实世界中很多有意思的事物,包括道路系统.城市之间的航班.互联网的连接,甚至是计算机专业的一 ...
- better-scroll快速上手及封装(vue项目)
愿你有诗有梦,有坦荡荡的远方 本文声明:这是一篇学习coderwhy老师的vue2课程的一个笔记,所以本文章是在vue项目中实现,没学过vue的大佬们可以举一反三. 使用场景及介绍 BetterScr ...
- sip信令跟踪工具sngrep
概述 在VOIP的使用过程中,最常见的问题就是信令不通和语音质量问题. 通常的问题跟踪手段包括日志分析.抓包分析. 抓包的工具有wireshark.tcpdump等等,如果是只针对sip信令的抓包,则 ...
- oo第四单元及期末总结
一.第四单元作业架构总结 第一次UML作业: 在分析各指令所需要的信息后建立了类(class),操作(operation),属性(Attribute)这几个类用来存储分析后的结果,而接口在本次作业中与 ...
- OO第三单元
OO第三单元 JML语言理论基础,应用工具链 JML语言基础 JML简介 定义: JML 是一种形式化的. 面向 JAVA 的行为接口规格语言 作用: 开展规格化设计.这样交给代码实现人员的将不是可能 ...
- Noip模拟68 2021.10.4
T1 玩水 成功在考试的时候注释掉正解,换成了暴力,只因为不敢保证正解思路的正确 脑子瓦特了,不知道把暴力打成函数拼在一起,不知道当时咋想的.... 就是你找有没有一个点上面和左面的字符一样, 如果这 ...
- Nginx(二):Nginx的四层(L4)和七层(L7)负载均衡
OSI七层模型 和 TCP/IP四层模型 四层负载均衡( L4 Load Balancing ) 四层负载均衡,主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内 ...
- Shadertoy 教程 Part 3 - 矩形和旋转
Note: This series blog was translated from Nathan Vaughn's Shaders Language Tutorial and has been au ...
- 第06课 OpenGL 纹理映射
纹理映射: 在这一课里,我将教会你如何把纹理映射到立方体的六个面. 学习 texture map 纹理映射(贴图)有很多好处.比方说您想让一颗导弹飞过屏幕.根据前几课的知识,我们最可行的办法可能是很多 ...