[bzoj5510]唱跳rap和篮球
显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况……
考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于在剩下n-4t的位置上摆上4种东西,且每种东西有数量限制(ai-t个)。
这个东西dp一下即可,用f[i][j]表示选了前i中东西,用了j个位置的方案数,则有转移$f[i][j]=\sum\limits_{ai-t\geq j-k\geq 0,j\geq 0}f[i-1][k]\cdot c(n-4t-k,n-4t-j)$,这样的时间复杂度是$o(n^{3})$(然后卡卡常就过去了,仅20s),无法通过。
显然发现可以用fft优化,具体操作将c(i,j)以j为第一维预处理,则第一维就不与k有关了,而第二位与fft的形式很像,只要注意删掉不合法的f状态(置为0)即可,总时间复杂度为$o(n^{2}log_{n})$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,ans,a[11],c[1001][1001],f[11][1001];
5 int main(){
6 scanf("%d",&n);
7 for(int i=0;i<4;i++)scanf("%d",&a[i]);
8 for(int i=0;i<=n;i++)c[i][i]=c[i][0]=1;
9 for(int i=2;i<=n;i++)
10 for(int j=1;j<i;j++)c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
11 for(int i=0;i<=n/4;i++){
12 memset(f,0,sizeof(f));
13 for(int j=0;j<=a[0]-i;j++)f[0][j]=c[n-4*i][j];
14 for(int j=1;j<4;j++)
15 for(int k=0;k<=n-4*i;k++)
16 for(int l=max(0,k-a[j]+i);l<=k;l++)
17 f[j][k]=(f[j][k]+1LL*f[j-1][l]*c[n-4*i-l][n-4*i-k])%mod;
18 ans=(ans+1LL*(1-i%2*2+mod)*f[3][n-4*i]%mod*c[n-3*i][i])%mod;
19 }
20 printf("%d",ans);
21 }
[bzoj5510]唱跳rap和篮球的更多相关文章
- 将Android手机无线连接到Ubuntu实现唱跳Rap
您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...
- [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt
[TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...
- [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥
题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...
- [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)
[luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...
- 「TJOI2019」唱、跳、rap 和篮球 题解
题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...
- [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)
算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...
- 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球
原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...
- [TJOI2019]唱、跳、rap和篮球
嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...
- Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】
当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...
随机推荐
- SQL SERVER数据库权限分配
1,新建 只能访问某一个表的只读用户. --添加只允许访问指定表的用户: exec sp_addlogin '用户名','密码','默认数据库名' ...
- 『Mivik的萌新赛 & Chino的比赛 2020』T2 题解 Galgame
如果这是我最后一篇题解,请每年为我上坟. Galgame 题目传送门 Decription as_lky 搞到了很多 Galgame(真的很多!).一款 Galgame 可以被描述为很多场景(Scen ...
- C++的智能指针学习笔记(初)
C++ primer plus 16.2节介绍了auto_ptr,该模板类在C++11中已弃用,目前已被shared_ptr代替. auto_ptr又叫做智能指针,用于管理动态内存分配的用法. 为什么 ...
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
- 【二食堂】Beta - Scrum Meeting 2
Scrum Meeting 2 例会时间:5.14 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 还在进行摸索,目前做出了一个demo可以进行简单的划词 issue 1. 继 ...
- OKR与影响地图,别再傻傻分不清
摘要:OKR和影响地图虽然都是为了一个目标去进行规划的方法,但是两者侧重的内容却不一致. 本文分享自华为云社区<一分钟读懂OKR与影响地图>,作者: 敏捷的小智. 什么是OKR及影响地图 ...
- Netty:Netty的介绍以及它的核心组件(二)—— ChannelFuture与回调
Callback 回调 一个 Callback(回调)就是一个方法,一个提供给另一个的方法的引用. 这让另一个方法可以在适当的时候回过头来调用这个 callback 方法.Callback 在很多编程 ...
- Spring IOC:BeanDefinition加载注册流程(转)
BeanFactory接口体系 以DefaultListableBeanFactory为例梳理一下BeanFactory接口体系的细节 主要接口.抽象类的作用如下: BeanFactory(根据注册的 ...
- 实验6:开源控制器实践——RYU
实验目的 能够独立部署RYU控制器 能够理解RYU控制器实现软件定义的集线器原理 能够理解RYU控制器实现软件定义的交换机原理 二.实验环境 下载虚拟机软件Oracle VisualBox或VMwar ...
- Linux上Qt旋转显示
对于嵌入式设备来说用于显示的LCD总是千奇百怪,比如说明明是一个竖屏,但是客户却要当横屏使用,也就是意味着我们需要将整个屏幕上显示的内容旋转90度或者270度. 这个操作对于Android系统来说相当 ...