令$e_{G}(a)$和$o_{G}(a)$分别表示在图$G$中从1到$a$的长度为奇数/偶数的最短路(若该类最短路不存在则为$\infty$),不难得到有以下结论——$f_{G}(a,b)=\begin{cases}[b\ge e_{G}(a)]&(b\equiv 0(mod\ 2))\\ [b\ge o_{G}(a)]&(b\equiv 1(mod\ 2))\end{cases}$

根据这个结论,即要求$\forall a,e_{G}(a)=e_{G'}(a)$且$o_{G}(a)=o_{G'}(a)$

先对原图$G$求出所有$e_{G}(a)$和$o_{G}(a)$,将$a$拆为$a_{0}$和$a_{1}$,并对边$(a,b)$连$(a_{0},b_{1})$和$(a_{1},b_{0})$,最后从$1_{0}$出发bfs即可,时间复杂度为$o(n)$

记$G'$的边集为$E$,那么$\forall a,e_{G}(a)=e_{G'}(a)$且$o_{G}(a)=o_{G'}(a)$当且仅当满足以下两个条件:

1.$(a,b)\in E,|e_{G}(a)-o_{G}(b)|=1$且$|e_{G}(b)-o_{G}(a)|=1$(特别的,定义$|\infty-\infty|=1$)

2.$\forall e_{G}(a)\ne 0,\infty,\exists (a,b)\in E,e_{G}(a)=o_{G}(b)+1$且$\forall o_{G}(a)\ne \infty,\exists (a,b)\in E,o_{G}(a)=e_{G}(b)+1$

(关于这个结论,必要性显然,充分性拆点后对距离从小到大归纳即可)

若存在$a$满足$e_{G}(a)=\infty$,那么根据第1个条件,与其相连的点$o_{G}(b)=\infty$,以此类推,所有点(原图连通)$b$都满足$e_{G}(b)=\infty$或$o_{G}(b)=\infty$($o_{G}(a)=\infty$同理)

此时,对于第2个条件,除1以外(1没有限制)每一个点仅有1维有限制,只需要连向一个可以使其该维满足第2个条件的点,显然这样的点必然存在,最终的边数即为$n-1$

(也即原图没有奇环,不能调整奇偶性,构造方案即取以1为根的最短路径树)

考虑这种情况后,即$\forall a,e_{G}(a),o_{G}(a)\ne \infty$,将其作为点$(\min(e_{G}(a),o_{G}(a)),\max(e_{G}(a),o_{G}(a)))$,并将所有点$(x,y)$按照$x+y$从小到大排序、$x+y$相同时$x$从小到大排序

现在,我们从前往后,依次考虑当前点$(x,y)$,去连边满足其第2个条件

如果之前存在点$(x-1,y+1)$“未完全合法”,显然从中任选一个连边即可,连边后$(x,y)$也成为一个“未完全合法”的点(还需要与$(x\pm 1,y-1)$连边),暂不处理

否则,如果之前存在点$(x-1,y-1)$,直接连边即可,即满足条件

否则,再找到$(x-1,y+1)$连边(若$x=0$时不需要连,否则必然存在),并作为“未完全合法”的点

另外,若$y=x+1$且$(x,y)$作为“未完全合法”的点,注意到$(x+1,y-1)$实际上是$(x,y)$自己,因此若之间存在点$(x,y)$“未完全合法”,将这两点连边即可(并取消两点“未完全合法”的标记)

最终,对于剩下的“未完全合法”的点$(x,y)$,找到$(x\pm 1,y-1)$连边即可,由于必然存在,即边数加上“未完全合法”的点数量即可

(当然这个数量也可以在修改过程中顺便加上)

由此,用map维护$(x,y)$上“未完全合法”的点数量即可支持此过程,时间复杂度为$o(n\log n)$

(关于这一做法的正确性,即是一个贪心,比较显然)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 struct Edge{
5 int nex,to;
6 }edge[N<<2];
7 queue<int>q;
8 vector<pair<int,int> >v;
9 map<int,int>mat_vis[N],mat[N];
10 int E,t,n,m,x,y,ans,head[N],vis[N],d[N];
11 void add(int x,int y){
12 edge[E].nex=head[x];
13 edge[E].to=y;
14 head[x]=E++;
15 }
16 void bfs(){
17 d[1]=0;
18 q.push(1);
19 vis[1]=1;
20 while (!q.empty()){
21 int k=q.front();
22 q.pop();
23 for(int i=head[k];i!=-1;i=edge[i].nex)
24 if (!vis[edge[i].to]){
25 d[edge[i].to]=d[k]+1;
26 q.push(edge[i].to);
27 vis[edge[i].to]=1;
28 }
29 }
30 }
31 int main(){
32 scanf("%d",&t);
33 while (t--){
34 scanf("%d%d",&n,&m);
35 E=ans=0;
36 for(int i=0;i<=(n<<1);i++){
37 head[i]=d[i]=-1;
38 vis[i]=0;
39 mat_vis[i].clear(),mat[i].clear();
40 }
41 for(int i=1;i<=m;i++){
42 scanf("%d%d",&x,&y);
43 add(x,y+n);
44 add(y+n,x);
45 add(x+n,y);
46 add(y,x+n);
47 }
48 bfs();
49 if (d[n+1]<0){
50 printf("%d\n",n-1);
51 continue;
52 }
53 v.clear();
54 for(int i=1;i<=n;i++)v.push_back(make_pair(min(d[i],d[i+n]),max(d[i],d[i+n])));
55 sort(v.begin(),v.end());
56 for(int i=0;i<n;i++)mat_vis[v[i].first][v[i].second]=1;
57 for(int i=0;i<n;i++){
58 x=v[i].first,y=v[i].second;
59 if ((x)&&(mat[x-1][y+1])){
60 mat[x-1][y+1]--;
61 mat[x][y]++;
62 ans++;
63 }
64 else{
65 if ((x)&&(mat_vis[x-1][y-1]))ans++;
66 else{
67 mat[x][y]++;
68 ans+=1+(x>0);
69 }
70 }
71 if ((y==x+1)&&(mat[x][y]>=2)){
72 mat[x][y]-=2;
73 ans--;
74 }
75 }
76 printf("%d\n",ans);
77 }
78 }

[luogu7417]Minimizing Edges P的更多相关文章

  1. 读书笔记-《Training Products of Experts by Minimizing Contrastive Divergence》

    Training Products of Experts by Minimizing Contrastive Divergence(以下简称 PoE)是 DBN 和深度学习理论的 肇始之篇,最近在爬梳 ...

  2. 【OpenMesh】Some basic operations: Flipping and collapsing edges

    这一节中你将学到一些OpenMesh中早已提供的基础操作. 内容包括三角形网格边的翻转以及通过连接邻接的顶点边缘折叠. 三角形网格的翻转(Flipping edges) 考虑到两个邻接面的三角形网格中 ...

  3. R 网络图 nodes,edges属性计算

    前面提到了用R画网络图,免不了要对网络图nodes和edges的特征做一些统计.分享下我的代码: ########## nodes edges的统计########### # ####nodes的度有 ...

  4. Google SketchUp Cookbook: (Chapter 3) Intersection Edges: Cutting and Trimming

    软件环境 SketchUp Pro 2018 参考书籍 Google SketchUp Cookbook Trimming an Object 使用 Intersect with Model 裁剪物体 ...

  5. CF962F Simple Cycles Edges

    CF962F Simple Cycles Edges 给定一个连通无向图,求有多少条边仅被包含在一个简单环内并输出 \(n,\ m\leq10^5\) tarjan 首先,一个连通块是一个环,当且仅当 ...

  6. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

  7. Maya cmds filterExpand 列出 选择的 uvs vertices faces edges 等 component 类型

    Maya cmds filterExpand 列出 选择的 uvs vertices faces edges 等 component 类型 cmds.ls() 的 flags 中没有指明 uvs 等这 ...

  8. Maya cmds pymel 快速选择hard edges(硬边)

    Maya cmds pymel 快速选择hard edges(硬边) import maya.cmds as cmds cmds.polySelectConstraint(m = 3, t = 0x8 ...

  9. Codeforces 160D Edges in MST tarjan找桥

    Edges in MST 在用克鲁斯卡尔求MST的时候, 每个权值的边分为一类, 然后将每类的图建出来, 那些桥就是必须有的, 不是桥就不是必须有. #include<bits/stdc++.h ...

随机推荐

  1. linux 测试2

    .阅读目录●第一种:cat /dev/null > filename●第二种:: > filename●第三种:> filename●第四种:echo "" &g ...

  2. 浅析InnoDB引擎的索引和索引原理

    浅析InnoDB引擎的索引和索引原理 什么是InnoDB的索引 InnoDB的索引就是一颗B+树.页是InnoDB引擎在内存和磁盘之间交换数据的基本单位,页的大小一般是16KB,页的大小可以在启动My ...

  3. 不会SQL也能做数据分析?浅谈语义解析领域的机会与挑战

    笔者按: 在第5次AI TIME PhD Debate上,笔者邀请了部分国内外语义解析领域的杰出华人学者共话语义解析的过去,现状和未来.本博客为笔者根据视频讨论总结的干货整理.对原视频感兴趣的同学可以 ...

  4. NX屏蔽窗口的按钮

    有时候在激活一个命令按钮的时候,需要同时禁止掉另外一个或多个命令按钮 ''' <summary> ''' 取按钮是否敏感 ''' </summary> ''' <para ...

  5. 更好的 java 重试框架 sisyphus 入门简介

    What is Sisyphus sisyphus 综合了 spring-retry 和 gauva-retrying 的优势,使用起来也非常灵活. 为什么选择这个名字 我觉得重试做的事情和西西弗斯很 ...

  6. 初始CSS01

    CSS基础知识 CSS介绍 CSS全称为层叠样式表,与HTML相辅相成,实现网页的排版布局与样式美化. 使用方式 根据样式表在页面中呈现的方式不同,可以通过以下三种方式在页面中使用格式 内联样式 改样 ...

  7. 如何将jdk12的源码导入idea

    如何将jdk12的源码导入idea中 一 首先,在idea中新建一个java工程 接着,在本地找到jdk所在的文件目录,进入jdk目录,找到javasrc目录或者一个src.zip的压缩包, 在向下或 ...

  8. UltraSoft - Alpha - Scrum Meeting 8

    Date: Apr 23th, 2020. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM.后端 aliyun连接前后端,跑通demo 实现邮箱注册的验证码 ...

  9. OO助教工作总结

    ​ \(OO\)助教的工作结束了,在这一学期中,我主要负责对作业进行测试,对指导书进行检查,讨论区管理,部分数据构造,以及完成随班助教的工作. 测试 指导书检查 ​ 每次指导书公开前我都会先把指导书看 ...

  10. Go 里的超时控制

    前言 日常开发中我们大概率会遇到超时控制的场景,比如一个批量耗时任务.网络请求等:一个良好的超时控制可以有效的避免一些问题(比如 goroutine 泄露.资源不释放等). Timer 在 go 中实 ...