tarjan2
反过来调过去,我还是感觉没学明白缩点
- 讲一个有向图中的所有强连通分量缩成一个点后,构成的新图是一个DAG。
- 一个点所在的强连通分量一定被该点所在DFS搜索树所包含
- 树上的边大致分为:树枝边,前向边(从上往下指),后向边(从下往上指),横叉变。其中前向边肉眼可见地没什么卵用
接下来开始算法流程。
- tarjan的精髓如上次所说,在于DFS搜索树,在DFS搜索树中强连通分量以怎样形式存在是关键问题。对于x,存在祖宗y,从x出发可经过横叉边,返祖边,后向边到达y,则x,y属于同一强连通分量。操作中记录最小 y 为:low(x)=dfn(y)。(其中单点也算强连通块)如果有一个dfn_x=low_x ,那么就是说 x 在一个新的强连通块里,同理,low_x的初始也就是dfn_x。
- 我们用一个栈来维护 已经被遍历过的、还未确定隶属哪个强连通分量的 点,在该栈中越靠栈顶DFS序越靠后(是栈底元素的后代)。
- 关于low_x的求法、更新。考虑如何求low_x:low_x 可能被更新,当且仅当x连出了一条树枝边,横叉边或后向边。设该边连向点 v
1. 树枝边: low_x= min(low_x,low_v) v 到达的点x一定可以到达,且v与x有祖宗关系
2. 后向边: low_x= min(low_x,low_v) v 的祖先一定是 x 的祖先
3. 横叉边:此时分两种情况考虑的
当 v 点已经退栈时,那么点v可到达的DFS序最小的祖先不是x的祖先,对 low_x 没有贡献; 当点v还在栈中时,v 点可到达的DFS序最小的祖先是x的祖先,有 low_x=min(low_x,low_v) (点v可到达的DFS序最小的祖先一定是x的,v 点能到达的点,x一定能到达) 特别地,由于前向边的更新对于求强连分量没有帮(更新是重复的),所以我们也可以有 low_x=min(low_x,low_v)
那么我们只需判断点 x 连出的边是哪一条就可以转移了。显然,当 dfn_v=0 时(此时v未被访问过),这是一条树枝边。我们再维护一个 col 数组, col_i 表示点 i 所在的强连通分量,在点 i 退栈时,我们对col进行赋值,那么当 dfn_v≠0&&col_v=0 时,点v一定在栈中(后向边指向的点一定在栈中,横叉边指向的点满足此条件时在栈中,而前向边是否存在与答案无关),此时用 low_x=min(low_x,low_v) 转移即可,否则无需转移。该算法时间复杂度为(n+m),因为深度优先遍历每个点只会经过一次,每条边也只会访问一次,而每个点都只会进/出栈一次,所以总时间复杂度为(n+m)
//把一个点当成根提溜出来,抖搂抖搂成一棵树
void dfs(int u)
{
//记录dfs序
//可通过任意多dfs边与最多一条非树返祖边到达的、本强连通分量内最小点
dfn[u]=low[u]=++dfs_clock;
s.push(u);
for(int v:g[u])
{
if(!dfn[v])//树边
{
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!sccnum[v])//返祖
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scccnt++;//强连通块+1
while(1)
{
int x=s.top();
s.pop();
sccnum[x]=scccnt;
sccsz[scccnt]++;
if(x==u) break;
}
}
}
tarjan2的更多相关文章
- 校际联合Contest
每次开一个坑都像是重新被碾压的预感 最近的新闻,以前很喜欢乔任梁的<复活>...然后他就死了...感觉我再多愁善感一点的话...就要悲伤逆流成河了吧... Contest 09/24(乐滋 ...
- Tarjan系列算法总结(hdu 1827,4612,4587,4005)
tarjan一直是我看了头大的问题,省选之前还是得好好系统的学习一下.我按照不同的算法在hdu上选题练习了一下,至少还是有了初步的认识.tarjan嘛,就是维护一个dfsnum[]和一个low[],在 ...
- tarjan解决路径询问问题
好久没更新了,就更一篇普及组内容好了. 首先我们考虑如何用tarjan离线求出lca,伪代码大致如下: def tarjan(x): 将x标记为已访问 for c in x的孩子: tarjan(c) ...
- bzoj 2730: [HNOI2012]矿场搭建【tarjan】
先tarjan找割点和点双连通分量,然后对一个点双,如果没有割点,那么需要建立两个出口(割掉一个另一个备用):如果只有一个割点,出口可以设立在任意一个非割点的地方:如果有两个及以上个割点,就不用建出口 ...
- JZOJ 5246. 【NOIP2017模拟8.8A组】Trip(trip)
5246. [NOIP2017模拟8.8A组]Trip(trip) (File IO): input:trip.in output:trip.out Time Limits: 1500 ms Memo ...
- 各色Tarjan集合
#include<bits/stdc++.h> using namespace std; const int N=100000,M=200000; //所有Tarjan都要: // dfn ...
随机推荐
- web自动化,下拉滚动到底部/顶部和下拉滚动到指定的元素
在web自动化,经常会遇到页面显示内容太多的时候,页面就会出现滚动条,一般有两种方式进行下拉,一种是直接下拉到底部/顶部/中部,或者直接给定元素,直接下拉到指定元素的位置. 两种方式的共同点: 两种方 ...
- 怎样在 CentOS/RHEL 7/6 上安装和配置 Sendmail 服务器
在 CentOS 上,可以通过 mailx 命令 或 sendmail 命令来给因特网发送电子邮件. 关于前者的文章比较多,关于后者的文章比较少. 这里记录了我在 CentOS 7 上安装和配置 se ...
- centos 内存使用情况+负载使用情况
内存使用情况,查看内存 free -h #查看内存 available: 可用内存 buff/cache: 缓存内存 free: 空闲内存 used: 已使用内存 负载使用情况 cat /p ...
- vue注册全局组件
在项目开发中能不能自己写一个组件可以像iview或者element那样可以不必引用就可以直接用呢?答案是可以的. 首先,写一个组件mainHeader. 接着在vue中注册这个组件,代码如下: Vue ...
- 一文搞懂Flink Window机制
Windows是处理无线数据流的核心,它将流分割成有限大小的桶(buckets),并在其上执行各种计算. 窗口化的Flink程序的结构通常如下,有分组流(keyed streams)和无分组流(non ...
- vps上安装CobaltStrike服务端
今天我在我的vps上安装CobaltStrike服务端,真的是踩坑无数,所以写这篇博客记录一下,防止后人再踩坑 安装Oracle JDK8 官方不建议使用OpenJdk,建议使用Oracle JDK的 ...
- Pop Sequeue
题目描述 Given a stack which can keep M numbers at most. Push N numbers in the order of 1,2,3...,N and p ...
- Java 各个版本中的新特性
新特性你知道多少? Java 8 Lambda 表达式 接口增加默认方法等 方法引用 流 Stream Java 9 模块系统 交互式工具jshell .of() 创建不可变集合 接口支持私有方法 更 ...
- Android一句话 | ViewGroup事件分发
ViewGroup中可重写的关于事件分发的事件有dispatchTouchEvent,onTouchEvent,onInterceptTouchEvent和requestDisallowInterce ...
- 极客大挑战2019 http
极客大挑战 http referer 请求头 xff 1.查看源码,发现secret.php 2.提示要把来源改成Sycsecret.buuoj.cn,抓包,添加Referer Referer:htt ...