# -*- coding = utf-8 -*-
# @Time : 2021/3/16
# @Author : pistachio
# @File : test1.py
# @Software : PyCharm # 安装 TensorFlow
import tensorflow as tf #载入并准备好 MNIST 数据集。将样本从整数转换为浮点数
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 #将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
]) model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) #训练并验证模型
model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2)
Epoch 1/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2942 - accuracy: 0.9143
Epoch 2/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.1443 - accuracy: 0.9571
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.1098 - accuracy: 0.9668
Epoch 4/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0896 - accuracy: 0.9726
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0758 - accuracy: 0.9769
313/313 - 0s - loss: 0.0793 - accuracy: 0.9772 Process finished with exit code 0

搭建简单模型训练MNIST数据集的更多相关文章

  1. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  2. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  3. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  4. TensorFlow 训练MNIST数据集(2)—— 多层神经网络

    在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...

  5. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  6. TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络

    1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...

  7. MXNet学习-第一个例子:训练MNIST数据集

    一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...

  8. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

  9. TensorFlow训练MNIST数据集(3) —— 卷积神经网络

    前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 ...

随机推荐

  1. android 文件存储&SharedPreferences

    一.文件存储 文件存储主要是I/O流的操作,没什么好说的,需要注意的是保存文件的各个目录. 下面为常用的目录: public static File getInFileDir(Context cont ...

  2. 【Linux】 Linux网络编程

    作者:李春港 出处:https://www.cnblogs.com/lcgbk/p/14779410.html 目录 前言 (一). 回顾系统编程进程的通信方式 (二). 网络编程大纲 (三). 网络 ...

  3. 基于混合云模式的calico部署

    开始前准备 确定calico数据存储 Calico同时支持kubernetes api和etcd数据存储.官方给出的建议是在本地部署中使用K8S API,仅支持Kubernetes模式.而官方给出的e ...

  4. Deepin/Uos系统更新源失败。提示:E: 仓库 “http://packages.chinauos.cn/uos eagle

    Deepin/Uos系统更新源失败.提示:E: 仓库 "http://packages.chinauos.cn/uos eagle InRelease" 没有数字签名 起因是在Uo ...

  5. MyBatis 单表CURD操作(五)

    MyBatis的CURD操作 添加CURD接口方法 package mapper; import entity.UserEntity; import org.apache.ibatis.annotat ...

  6. rpm命令的简介(2)-(转自 青春乐园 )

    青春乐园 怎样查看rpm安装包的安装路径 rpm -qpl xxxxxx.rpm 1.如何安装rpm软件包 rmp软件包的安装可以使用程序rpm来完成.执行下面的命令 rpm -i your-pack ...

  7. 9.13-15 runlevel & init & service

    runlevel:输出当前运行级别 runlevel命令用于输出当前Linux系统的运行级别. -quiet 不输出结果,用于通过返回值判断的场合 [root@cs6 ~]# runlevel N 3 ...

  8. 【Azure 事件中心】为应用程序网关(Application Gateway with WAF) 配置诊断日志,发送到事件中心

    问题描述 在Application Gateway中,开启WAF(Web application firewall)后,现在需要把访问的日志输出到第三方分析代码中进行分析,如何来获取WAF的诊断日志呢 ...

  9. 实战|教你用Python玩转Mysql

    爬虫采集下来的数据除了存储在文本文件.excel之外,还可以存储在数据集,如:Mysql,redis,mongodb等,今天辰哥就来教大家如何使用Python连接Mysql,并结合爬虫为大家讲解. 前 ...

  10. Psexec和wmiexec的原理和区别

    PSEXEC 针对远程建立连接的方式有两种,一种先建立IPC通道连接,然后直接使用,操作如下: net use \\192.168.0.1\ipc$ "password" /use ...