线程池原理及python实现
为什么需要线程池
目前的大多数网络服务器,包括Web服务器、Email服务器以及数据库服务器等都具有一个共同点,就是单位时间内必须处理数目巨大的连接请求,但处理时间却相对较短。
传统多线程方案中我们采用的服务器模型则是一旦接受到请求之后,即创建一个新的线程,由该线程执行任务。任务执行完毕后,线程退出,这就是是“即时创建,
即时销毁”的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器将处于不停的创建线程,销毁线程的状态。
我们将传统方案中的线程执行过程分为三个过程:T1、T2、T3:
T1:线程创建时间
T2:线程执行时间,包括线程的同步等时间
T3:线程销毁时间
那么我们可以看出,线程本身的开销所占的比例为(T1+T3) / (T1+T2+T3)。如果线程执行的时间很短的话,这比开销可能占到20%-50%左右。如果任务执行时间很频繁的话,这笔开销将是不可忽略的。
除此之外,线程池能够减少创建的线程个数。通常线程池所允许的并发线程是有上界的,如果同时需要并发的线程数超过上界,那么一部分线程将会等待。而传统方案中,如果同时请求数目为2000,那么最坏情况下,系统可能需要产生2000个线程。尽管这不是一个很大的数目,但是也有部分机器可能达不到这种要求。
因此线程池的出现正是着眼于减少线程池本身带来的开销。线程池采用预创建的技术,在应用程序启动之后,将立即创建一定数量的线程(N1),放入空闲队列
中。这些线程都是处于阻塞(Suspended)状态,不消耗CPU,但占用较小的内存空间。当任务到来后,缓冲池选择一个空闲线程,把任务传入此线程中运行。当N1个线程都在处理任务后,缓冲池自动创建一定数量的新线程,用于处理更多的任务。在任务执行完毕后线程也不退出,而是继续保持在池中等待下一次的任务。当系统比较空闲时,大部分线程都一直处于暂停状态,线程池自动销毁一部分线程,回收系统资源。
基于这种预创建技术,线程池将线程创建和销毁本身所带来的开销分摊到了各个具体的任务上,执行次数越多,每个任务所分担到的线程本身开销则越小,不过我们另外可能需要考虑进去线程之间同步所带来的开销。
构建线程池框架
一般线程池都必须具备下面几个组成部分:
线程池管理器:用于创建并管理线程池
工作线程: 线程池中实际执行的线程
任务接口: 尽管线程池大多数情况下是用来支持网络服务器,但是我们将线程执行的任务抽象出来,形成任务接口,从而是的线程池与具体的任务无关。
任务队列:线程池的概念具体到实现则可能是队列,链表之类的数据结构,其中保存执行线程。
我们把任务放进队列中去,然后开N个线程,每个线程都去队列中取一个任务,执行完了之后告诉系统说我执行完了,然后接着去队列中取下一个任务,直至队列中所有任务取空,退出线程。
这就是一般的线程池实现的原理,下面看一个实际的代码:
线程池的python实现代码:
# !/usr/bin/env python
# -*- coding:utf-8 -*- import Queue
import threading
import time class WorkManager(object):
def __init__(self, work_num=1000,thread_num=2):
self.work_queue = Queue.Queue()
self.threads = []
self.__init_work_queue(work_num)
self.__init_thread_pool(thread_num) """
初始化线程
"""
def __init_thread_pool(self,thread_num):
for i in range(thread_num):
self.threads.append(Work(self.work_queue)) """
初始化工作队列
"""
def __init_work_queue(self, jobs_num):
for i in range(jobs_num):
self.add_job(do_job, i) """
添加一项工作入队
"""
def add_job(self, func, *args):
self.work_queue.put((func, list(args)))#任务入队,Queue内部实现了同步机制 """
等待所有线程运行完毕
"""
def wait_allcomplete(self):
for item in self.threads:
if item.isAlive():item.join() class Work(threading.Thread):
def __init__(self, work_queue):
threading.Thread.__init__(self)
self.work_queue = work_queue
self.start() def run(self):
#死循环,从而让创建的线程在一定条件下关闭退出
while True:
try:
do, args = self.work_queue.get(block=False)#任务异步出队,Queue内部实现了同步机制
do(args)
self.work_queue.task_done()#通知系统任务完成
except:
break #具体要做的任务
def do_job(args):
time.sleep(0.1)#模拟处理时间
print threading.current_thread(), list(args) if __name__ == '__main__':
start = time.time()
work_manager = WorkManager(10000, 10)#或者work_manager = WorkManager(10000, 20)
work_manager.wait_allcomplete()
end = time.time()
print "cost all time: %s" % (end-start)
Work类是一个Python线程池,不断地从workQueue队列中获取需要执行的任务,执行之,并将结果写入到resultQueue中。这里的workQueue和resultQueue都是线程安全的,其内部对各个线程的操作做了互斥。当从workQueue中获取任务超时,则线程结束。
WorkerManager负责初始化Python线程池,提供将任务加入队列和获取结果的接口,并能等待所有任务完成。
在 Python 中使用线程时,这个模式是一种很常见的并且推荐使用的方式。具体工作步骤描述如下:
- 创建一个
Queue.Queue()的实例,然后使用数据对它进行填充。 - 将经过填充数据的实例传递给线程类,后者是通过继承
threading.Thread的方式创建的。 - 生成守护线程池。
- 每次从队列中取出一个项目,并使用该线程中的数据和 run 方法以执行相应的工作。
- 在完成这项工作之后,使用
queue.task_done()函数向任务已经完成的队列发送一个信号。 - 对队列执行 join 操作,实际上意味着等到队列为空,再退出主程序。
在使用这个模式时需要注意一点:通过将守护线程设置为 true,将允许主线程或者程序仅在守护线程处于活动状态时才能够退出。这种方式创建了一种简单的方式以控制程序流程,因为在退出之前,您可以对队列执行 join 操作、或者等到队列为空。队列模块文档详细说明了实际的处理过程,请参见参考资料:
join()保持阻塞状态,直到处理了队列中的所有项目为止。在将一个项目添加到该队列时,未完成的任务的总数就会增加。当使用者线程调用 task_done() 以表示检索了该项目、并完成了所有的工作时,那么未完成的任务的总数就会减少。当未完成的任务的总数减少到零时,
join()就会结束阻塞状态。
参考:http://blog.csdn.net/yatere/article/details/7316487
http://blog.csdn.net/liu1pan2min3/article/details/8545979
http://www.ibm.com/developerworks/cn/aix/library/au-threadingpython/?ca=drs-tp3008
线程池原理及python实现的更多相关文章
- 5分钟看懂系列:Python 线程池原理及实现
概述 传统多线程方案会使用"即时创建, 即时销毁"的策略.尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器 ...
- java多线程系类:JUC线程池:03之线程池原理(二)(转)
概要 在前面一章"Java多线程系列--"JUC线程池"02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包 ...
- Java多线程系列--“JUC线程池”03之 线程池原理(二)
概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...
- Java多线程系列--“JUC线程池”04之 线程池原理(三)
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...
- Java多线程系列--“JUC线程池”05之 线程池原理(四)
概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...
- Java线程池ThreadPoolExecutor使用和分析(三) - 终止线程池原理
相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...
- java多线程系列(六)---线程池原理及其使用
线程池 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java多线程系列(一)之java多线程技能 java多线程系列(二)之对象变量的并发访问 java多线程系列(三)之等待通知 ...
- Java 并发编程——Executor框架和线程池原理
Eexecutor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相当于生产者,执行任务 ...
- Java并发——线程池原理
"池"技术对我们来说是非常熟悉的一个概念,它的引入是为了在某些场景下提高系统某些关键节点性能,最典型的例子就是数据库连接池,JDBC是一种服务供应接口(SPI),具体的数据库连接实 ...
随机推荐
- Linux 释放Linux 系统预留的硬盘空间
释放 Linux 系统预留的硬盘空间 by:授客 QQ:1033553122 大多数文件系统都会保留一部分空间作为紧急情况时用(比如硬盘空间满了),这样能保证有些关键应用(比如数据库)在硬盘满的时 ...
- 简单的分页小demo
public class Demo { public static void main(String[] args) { Scanner sc = new Scanner(System.in); Sy ...
- word2vec前世今生
word2vec前世今生 2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地 ...
- CSS 小结笔记之伸缩布局 (flex)
CSS flex 是一种伸缩布局,之前块级元素布局在同一行,可以通过display或position或float来实现,而本篇介绍一个新的方法——flex(弹性布局). flex 为和模型布局提供了极 ...
- 用 React 整合 LogEntries JavaScript 库
[编者按]本文作者为 David Posin,主要介绍 React 与 LogEntries 间的相互操作.本文系国内 ITOM 管理平台 OneAPM 编译呈现. 众所周知,React.js已经被证 ...
- SQLSERVER中的LOB页面简单研究
SQLSERVER中的LOB页面简单研究 这篇文章和我另一篇文章是相辅相成的,在看<SQLSERVER2012 列存储索引的简单研究和测试>这篇文章之前希望大家先看一下这篇文章o(∩_∩) ...
- Sql server中的 nvarchar(max) 到底有多大?(转载)
问题: SQL server中的nvarchar(max)最大的长度是4000个字吗? 如果字段的内容超过4000个字时用什么类型呢?text 还是binary?他们的最大长度是多少?比如字段放的是长 ...
- python自学——文件处理(强制刷新)
# 文件的刷新flash# 为什么要刷新文件呢?# 首先我们就要知道电脑是怎么储存信息的,# 写的代码保存在缓存中当缓存满了之后就会将内容储存到硬盘中. # 那这个跟刷新有什么关系呢?# 系统也会自动 ...
- 开发中解决Access-Control-Allow-Origin跨域问题的Chrome神器插件,安装及使用
背景: 笔者在用cordova开发安卓程序的时候在安卓设备上不存在跨域问题,但是在浏览器端模拟调试的时候却出现了Access-Control-Allow-Origin跨域问题,报错如下 No 'Acc ...
- Tidb数据库报错:Transaction too large
Tidb是一个支持ACID的分布式数据库,当你导入一个非常大的数据集时,这时候产生的事务相当严重,并且Tidb本身对事物的大小也是有一个严格的控制. 有事务大小的限制主要在于 TiKV 的实现用了一致 ...