传送门

模板题。

将bbb序列反过来然后上fftfftfft搞定。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=4e5+5;
const double pi=acos(-1.0);
struct Complex{
	double x,y;
	inline Complex operator+(const Complex&b){return (Complex){x+b.x,y+b.y};}
	inline Complex operator-(const Complex&b){return (Complex){x-b.x,y-b.y};}
	inline Complex operator*(const Complex&b){return (Complex){x*b.x-y*b.y,x*b.y+y*b.x};}
	inline Complex operator/(const double&b){return (Complex){x/b,y/b};}
}a[N],b[N];
int n,pos[N],lim,tim;
inline void init(){
	lim=1,tim=0;
	while(lim<=n*2)lim<<=1,++tim;
	for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void fft(Complex *a,int type){
	for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(ri mid=1;mid<lim;mid<<=1){
		Complex wn=(Complex){cos(pi/mid),type*sin(pi/mid)};
		for(ri j=0,len=mid<<1;j<lim;j+=len){
			Complex w=(Complex){1,0};
			for(ri k=0;k<mid;++k,w=w*wn){
				Complex a0=a[j+k],a1=w*a[j+k+mid];
				a[j+k]=a0+a1,a[j+k+mid]=a0-a1;
			}
		}
	}
	if(type==-1)for(ri i=0;i<lim;++i)a[i]=a[i]/lim;
}
int main(){
	freopen("lx.in","r",stdin);
	n=read()-1,init();
	for(ri i=0;i<=n;++i)a[i].x=read(),b[n-i].x=read();
	fft(a,1),fft(b,1);
	for(ri i=0;i<lim;++i)a[i]=a[i]*b[i];
	fft(a,-1);
	for(ri i=n;i<=n*2;++i)printf("%d\n",(int)(a[i].x+0.5));
	return 0;
}

2018.11.18 bzoj2194: 快速傅立叶之二(fft)的更多相关文章

  1. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  2. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  3. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  4. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  5. bzoj2194: 快速傅立叶之二

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  6. 【bzoj2194】快速傅立叶之二 FFT

    题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...

  7. bzoj千题计划256:bzoj2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...

  8. BZOJ2194: 快速傅立叶之二(NTT,卷积)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1776  Solved: 1055[Submit][Status][Discuss] Descript ...

  9. BZOJ2194 快速傅立叶之二 【fft】

    题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...

随机推荐

  1. MySQL之多表查询练习 与基本查询基础

    MySQL  增删查改 一.增:有2种方法 1.使用insert插入单行数据: 语法:insert [into]<表名> [列名] values <列值> 例:insert i ...

  2. 微信小程序开发——获取小程序带参二维码全流程

    前言: 想要获取微信小程序带参数二维码,如这种: 官方文档只说了获取小程序码和二维码的三种接口及调用(参考链接:https://developers.weixin.qq.com/miniprogram ...

  3. TZOJ 4712 Double Shortest Paths(最小费用最大流)

    描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...

  4. TZOJ 3295 括号序列(区间DP)

    描述 给定一串字符串,只由 “[”.“]” .“(”.“)”四个字符构成.现在让你尽量少的添加括号,得到一个规则的序列. 例如:“()”.“[]”.“(())”.“([])”.“()[]”.“()[( ...

  5. 项目总结15:JavaScript模拟表单提交(实现window.location.href-POST提交数据效果)

    JavaScript模拟表单提交(实现window.location.href-POST提交数据效果) 前沿 1-在具体项目开发中,用window.location.href方法下载文件,因windo ...

  6. C++ 中的RTTI机制详解

    前言 RTTI是”Runtime Type Information”的缩写,意思是运行时类型信息,它提供了运行时确定对象类型的方法.RTTI并不是什么新的东西,很早就有了这个技术,但是,在实际应用中使 ...

  7. stark组件之路由分发【模仿Django的admin】

    一.先看下django的admin是如何进行路由分发的 1.先看下django的admin的url路径有哪些 其实很简单,假如有一个书籍表,那么每张表对应四个url,增.删.改.查 查看的url ht ...

  8. 数据库(mysql)

    一.left join  right join  inner join left join(左连接),在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录. right join(右 ...

  9. swift - 加速器/摇一摇功能

    import UIKit class ViewController: UIViewController { override func viewDidLoad() { super.viewDidLoa ...

  10. for all entries

    1.必须要判断for all entries in后面的内表是否为空,如果为空,where条件中与内表中字段进行比较的结果全部为真,会导致取出非常多的数据,影响系统性能.2.使用for all ent ...