利用 ImageAI 在 COCO 上学习目标检测
ImageAI是一个python库,旨在使开发人员能够使用简单的几行代码构建具有包含深度学习和计算机视觉功能的应用程序和系统。 这个 AI Commons 项目https://commons.specpal.science 由 Moses Olafenwa 和 John Olafenwa 开发和维护。为了更好的使用 ImageAI,我将其 Fork 到 CodeXZone/ImageAI。同时,ImageAI 也提供了中文手册:imageai。下面我将借助该教程一步一步的学习目标检测。
利用 cocoz 载入 COCO 数据集
首先,利用 cocoz 载入 COCOZ:
import sys
# 将 cocoapi 添加进入环境变量
sys.path.append(r'D:\API\cocoapi\PythonAPI')
from pycocotools.cocoz import AnnZ, ImageZ, COCOZ
# ------------------
import numpy as np
from matplotlib import pyplot as plt
from IPython import display
def use_svg_display():
# 用矢量图显示, 效果更好
display.set_matplotlib_formats('svg')
def show_imgs(imgs, k=4):
'''
展示 多张图片
'''
n = len(imgs)
h, w = k, n // k
assert n == h * w, "图片数量不匹配"
use_svg_display()
_, ax = plt.subplots(h, w, figsize=(5, 5)) # 设置图的尺寸
K = np.arange(n).reshape((h, w))
for i in range(h):
for j in range(w):
img = imgs[K[i, j]]
ax[i][j].imshow(img)
ax[i][j].axes.get_yaxis().set_visible(False)
ax[i][j].set_xticks([])
plt.show()
dataDir = r'E:\Data\coco\images' # COCO 数据根目录
dataType = 'train2017'
imgZ = ImageZ(dataDir, dataType)
show_imgs(imgZ[300:316])
物体检测,提取和微调
import sys
sys.path.append('D:/API/ImageAI')
from imageai.Detection import ObjectDetection
import os
execution_path = os.getcwd()
detector = ObjectDetection() # 创建目标检测实例
detector.setModelTypeAsRetinaNet()
detector.setModelPath(
os.path.join(execution_path, "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel() # 载入预训练模型
由于 detector.detectObjectsFromImage
比较容易支持解压后的图片,所以我们可以提取出一张图片来做测试:
input_image = imgZ.Z.extract(imgZ.names[0]) # 输入文件的路径
output_image = os.path.join(execution_path, "image2new.jpg") # 输出文件的路径
detections = detector.detectObjectsFromImage(
input_image=input_image, output_image_path=output_image)
for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------")
motorcycle : 99.99607801437378
--------------------------------
detectObjectsFromImage()
函数返回一个字典列表,每个字典包含图像中检测到的对象信息,字典中的对象信息有 name
(对象类名)和 percentage_probability
(概率)以及 box_points
(图片的左上角与右下角的坐标)。
detections
[{'name': 'motorcycle',
'percentage_probability': 99.99607801437378,
'box_points': array([ 34, 92, 546, 427])}]
下面我们看看其标注框:
img = plt.imread(output_image)
plt.imshow(img)
plt.show()
为了直接使用压缩文件,我们可以修改 detectObjectsFromImage
的默认参数 input_type='file'
为 input_type='array'
:
input_image = imgZ[202] # 输入文件的路径
output_image = os.path.join(execution_path, "image2.jpg") # 输出文件的路径
detections = detector.detectObjectsFromImage(
input_image=input_image, output_image_path=output_image, input_type='array')
for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------")
img = plt.imread(output_image)
plt.imshow(img)
plt.show()
tennis racket : 54.25310730934143
--------------------------------
person : 99.85058307647705
--------------------------------
detections, objects_path = detector.detectObjectsFromImage(
input_image=imgZ[900], input_type = 'array',
output_image_path=os.path.join(execution_path, "image3new.jpg"),
extract_detected_objects=True)
for eachObject, eachObjectPath in zip(detections, objects_path):
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("Object's image saved in ", eachObjectPath)
print("--------------------------------")
person : 56.35678172111511
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-1.jpg
--------------------------------
person : 75.83483457565308
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-2.jpg
--------------------------------
person : 60.49004793167114
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-3.jpg
--------------------------------
person : 85.2730393409729
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-4.jpg
--------------------------------
person : 83.12703967094421
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-5.jpg
--------------------------------
bus : 99.7751772403717
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\bus-6.jpg
--------------------------------
extract_detected_objects=True
将会把检测到的对象提取并保存为单独的图像;这将使函数返回 2 个值,第一个是字典数组,每个字典对应一个检测到的对象信息,第二个是所有提取出对象的图像保存路径,并且它们按照对象在第一个数组中的顺序排列。我们先看看原图:
plt.imshow(imgZ[900])
plt.show()
显示识别出来的对象:
show_imgs([plt.imread(fname) for fname in objects_path], 2)
还有一个十分重要的参数 minimum_percentage_probability
用于设定预测概率的阈值,其默认值为 50(范围在 \(0-100\)之间)。如果保持默认值,这意味着只有当百分比概率大于等于 50 时,该函数才会返回检测到的对象。使用默认值可以确保检测结果的完整性,但是在检测过程中可能会跳过许多对象。下面我们看看修改后的效果:
detections = detector.detectObjectsFromImage(
input_image=imgZ[900],
input_type='array',
output_image_path=os.path.join(execution_path, "image3new.jpg"),
minimum_percentage_probability=70)
for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------")
person : 75.83483457565308
--------------------------------
person : 85.2730393409729
--------------------------------
person : 83.12703967094421
--------------------------------
bus : 99.7751772403717
--------------------------------
我们将 minimum_percentage_probability
设置为 70,此时仅仅只能检测到 4 个。
利用 ImageAI 在 COCO 上学习目标检测的更多相关文章
- GPU上创建目标检测Pipeline管道
GPU上创建目标检测Pipeline管道 Creating an Object Detection Pipeline for GPUs 今年3月早些时候,展示了retinanet示例,这是一个开源示例 ...
- 论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey
目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Rep ...
- zz深度学习目标检测2014至201901综述
论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey 发表于 2019-02-14 | 更新 ...
- 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf Slides:http://w ...
- (转)深度学习目标检测指标mAP
深度学习目标检测指标mAP https://github.com/rafaelpadilla/Object-Detection-Metrics 参考上面github链接中的readme,有详细描述
- 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...
- 深度学习目标检测综述推荐之 Xiaogang Wang ISBA 2015
一.INTRODUCTION部分 (1)先根据时间轴讲了历史 (2)常见的基础模型 (3)讲了深度学习的优势 那就是feature learning,而不用人工划分的feature engineeri ...
- 深度学习目标检测:RCNN,Fast,Faster,YOLO,SSD比较
转载出处:http://blog.csdn.net/ikerpeng/article/details/54316814 知乎的图可以放大,更清晰,链接:https://www.zhihu.com/qu ...
- 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
随机推荐
- 界面编程之QT的线程20180731
/*******************************************************************************************/ 一.为什么需 ...
- StratifiedKFold与GridSearchCV版本前后使用方法
首先在sklearn官网上你可以看到: 所以,旧版本import时: from sklearn.cross_validation import GridSearchCV 新版本import时: fro ...
- Linux问题集锦
一些会遇到的问题,我会不断更新问题集锦~ 1.vi / vim保存文件时遇到的问题:E212: Can't open file for writing 在vi / vim下输入w或wq!保存编辑的文 ...
- Linux - awk 文本处理工具三
AWK 文件打印匹配 格式示例 awk '/Tom/' file # 打印匹配到得行 awk '/^Tom/{print $1}' # 匹配Tom开头的行 打印第一个字段 awk '$1 !~ /ly ...
- 第5月第21天 bugly ios证书位置
1.bugly 一. 本地测试 补丁编写规则参见: JSPatch 将补丁文件main.js拖拽到工程内: 开启 BuglyConfig 中的热更新本地调试模式: BuglyConfig *confi ...
- Strange Queries(莫队)
题目 You are given an array with n integers a1, a2, ..., an, and q queries to answer. Each query consi ...
- Spark笔记之DataFrameNaFunctions
DataFrameNaFunctions用来对DataFrame中值为null或NaN的列做处理,处理分为三种类型: drop:根据条件丢弃含有null或NaN的行 fill:根据条件使用指定值填充值 ...
- PHP5.6 和PHP7.0区别
1. PHP7.0 比PHP5.6性能提升了两倍. 2.PHP7.0全面一致支持64位. 3.PHP7.0之前出现的致命错误,都改成了抛出异常. 4.增加了空结合操作符(??).效果相当于三元运算符. ...
- 【API】文件操作编程基础-CreateFile、WriteFile、SetFilePointer
1.说明 很多黑客工具的实现是通过对文件进行读写操作的,而文件读写操作实质也是对API函数的调用. 2.相关函数 CreateFile : 创建或打开文件或I/O设备.最常用的I/O设备如下:文件,文 ...
- Jquery ajax json 不执行success的原因 坑爹
最近在看jQuery的API文档,在使用到jQuery的ajax时,如果指定了dataType为json,老是不执行success回调,而是执行了error回调函数,极度郁闷.后面改为1.2.6版本可 ...