【LOJ】#6435. 「PKUSC2018」星际穿越
题解
想出70的大众分之后就弃疗了,正解有点神仙
就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走
根据这个可以结合RMQ写个70分的暴力
我们就考虑,最优的话显然是走一步左边就到了目标点,第二步才开始有分叉
假如我们先走了一步左边,然后就变成了,从\(L[x]\)开始走,下一步可以走到\([L[x],N]\)的所有点最小的转移点之前,之后再把后来走的点代价都加上1即可
这样的话,不管是一直走左边,还是走了一步右边再走了左边,情况都被包含了
这个时候考虑这个问题就比较简单了,可以使用倍增
\(f[i][j]\)表示\([i,n]\)内最小的\(l[x]\)的值
\(s[i][j]\)表示\(i\)走到\(f[i][j]\)内所有点的距离和
转移就是
\(f[i][j] = f[f[i][j - 1]][j - 1]\)
\(s[i][j] = s[i][j - 1] + s[f[i][j - 1]][j - 1] + 2^{j - 1} * (f[i][j - 1] - f[i][j])\)
查询两端前缀和,查的时候直接把\(x\)变成\(L[x]\)进行倍增即可
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 300005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,L[MAXN];
int f[MAXN][20];
int64 s[MAXN][20];
void Init() {
read(N);
for(int i = 2 ; i <= N ; ++i) read(L[i]);
f[N][0] = L[N];s[N][0] = N - L[N];
for(int i = N - 1 ; i >= 1 ; --i) {
f[i][0] = min(f[i + 1][0],L[i]);s[i][0] = i - f[i][0];
}
for(int j = 1 ; j <= 19 ; ++j) {
for(int i = 1 ; i <= N ; ++i) {
f[i][j] = f[f[i][j - 1]][j - 1];
s[i][j] = s[i][j - 1] + s[f[i][j - 1]][j - 1] + 1LL * (f[i][j - 1] - f[i][j]) * (1 << j - 1);
}
}
}
int64 gcd(int64 a,int64 b) {
return b == 0 ? a : gcd(b,a % b);
}
int64 Calc(int tar,int st) {
if(tar >= L[st]) return st - tar;
int64 res = st - L[st];st = L[st];
int64 sum = 1;
for(int j = 19 ; j >= 0 ; --j) {
if(f[st][j] >= tar) {
res += s[st][j];
res += 1LL * sum * (st - f[st][j]);
st = f[st][j];
sum += 1 << j;
}
}
res += 1LL * (sum + 1) * (st - tar);
return res;
}
void Solve() {
int Q;int l,r,x;
read(Q);
while(Q--) {
read(l);read(r);read(x);
int64 u = Calc(l,x) - Calc(r + 1,x),d = r - l + 1,g = gcd(u,d);
u /= g;d /= g;
out(u);putchar('/');out(d);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#6435. 「PKUSC2018」星际穿越的更多相关文章
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- loj#6435. 「PKUSC2018」星际穿越(倍增)
题面 传送门 题解 我们先想想,在这个很特殊的图里该怎么走最短路 先设几个量,\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边(即题中的\(l_i\)),\(l\)表示当前在计算 ...
- #6435. 「PKUSC2018」星际穿越
考场上写出了70分,现在填个坑 比较好写的70分是这样的:(我考场上写的贼复杂) 设\(L(i)=\min_{j=i}^nl(j)\) 那么从i开始向左走第一步能到达的就是\([l(i),i-1]\) ...
- 「PKUSC2018」星际穿越 (70分做法)
5371: [Pkusc2018]星际穿越 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 27 Solved: 11[Submit][Status] ...
- 「PKUSC2018」星际穿越(倍增)
倍增好题啊! 我们我们预处理 \(f[x][i]\) 表示 \(x\) 点最左到达的端点,\(sum[x][i]\) 表示 \(x\) 点最左到达的端点时 \(f[x][i]\sim x\) 的答案, ...
- 「PKUSC2018」星际穿越
传送门 Solution 倍增 Code #include <bits/stdc++.h> #define reg register #define ll long long usin ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- Apache Storm从一端读取实时数据的原始流
Apache Storm从一端读取实时数据的原始流,并将其传递通过一系列小处理单元,并在另一端输出处理/有用的信息. 下图描述了Apache Storm的核心概念. 640?wx_fmt=png&am ...
- 【BZOJ1452】[JSOI2009]Count(树状数组)
[BZOJ1452][JSOI2009]Count(树状数组) 题面 BZOJ 洛谷 题解 数据范围这么小?不是对于每个颜色开一个什么东西记一下就好了吗. 然而我不会二维树状数组? 不存在的,凭借多年 ...
- 【BZOJ1444】[JSOI2009]有趣的游戏(高斯消元,AC自动机)
[BZOJ1444][JSOI2009]有趣的游戏(高斯消元,AC自动机) 题面 BZOJ 题解 先把\(AC\)自动机构建出来,最好构成\(Trie\)图.然后这样子显然是在一个有向图中有一堆概率的 ...
- Go 语言中的方法,接口和嵌入类型
https://studygolang.com/articles/1113 概述 在 Go 语言中,如果一个结构体和一个嵌入字段同时实现了相同的接口会发生什么呢?我们猜一下,可能有两个问题: 编译器会 ...
- 洛谷P4486 Kakuro
题意:你有一个棋盘,某些格子是限制条件,形如"从这里开始下面所有连续空格的和为a"或"从这里开始向右的所有连续空格之和为b"一个格子可以同时拥有两个限制条件. ...
- 鸟哥的Linux私房菜——第十一章
视频链接: 土豆:http://www.tudou.com/programs/view/yT0PfIWU720 B站(推荐): http://www.bilibili.com/video/av9877 ...
- 小贾漫谈——Java反射
一.Class的API 二.测试使用的JavaBean class Admin{ //字段 public String userName; public String pwd; private int ...
- JAVA记录-IntelliJ Idea 2017 免费激活方法(转载)
1. 到网站 http://idea.lanyus.com/ 获取注册码. 2.填入下面的license server: http://intellij.mandroid.cn/ http://ide ...
- '增量赋值(augmented assignment)', 多么痛的领悟!
'增量赋值(augmented assignment)', 多么痛的领悟! 深刻理解x += a 与 x = x + a 的不同: 按理说上面的两条语句是等价的, 功能上完全一样的. 之所以说不同, ...
- 为ASP.NET控件加入快捷菜单
ContextMenu Control 快捷菜单控件概述: MSDN Liabrary 中包含了几个DHTML快捷菜单的示例.分别提供了对这一功能的不能实现方法.一个快捷菜单就是在页面中任何位置的一组 ...