转载链接:     http://blog.csdn.net/b108074013/article/details/37657801

很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间。去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇《基于HDevelop的形状匹配算法参数的优化研究》文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需要可以去下载。

德国MVTec公司开发的HALCON机器视觉开发软件,提供了许多的功能,在这里我主要学习和研究了其中的形状匹配的算法和流程。HDevelop开发环境中提供的匹配的方法主要有三种,即Component-Based、Gray-Value-Based、Shape-Based,分 别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配。这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模 板的相同过程。这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于 形状匹配的视频对象跟踪这些研究,从中取得较好的效果,简化了用其他工具,比如VC++来开发的过程。在VC下往往针对不同的图像格式,就会弄的很头疼,更不用说编写图像特征提取、模板建立和搜寻模板的代码呢,我想其中间过程会很复杂,效果也不一定会显著。下面我就具体地谈谈基于HALCON的形状匹配算法的研究和心得总结。

1.       Shape-Based matching的基本流程

HALCON提 供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人 体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。基本流程是这样的,如下所示:

⑴ 首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即可,gen_rectangle1()这个函数就会帮助你生成一个矩形,利用area_center()找到这个矩形的中心;

⑵ 然后需要从图像中获取这个矩形区域的图像,reduce_domain()会得到这个ROI;这之后就可以对这个矩形建立模板,而在建立模板之前,可以先对这个区域进行一些处理,方便以后的建模,比如阈值分割,数学形态学的一些处理等等;

⑶ 接下来就可以利用create_shape_model()来创建模板了,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。对特别大的模板,用Optimization来减少模板点的数量是很有用的;MinConstrast将模板从图像的噪声中分离出来,如果灰度值的波动范围是10,则MinConstrast应当设为10;Metric参数决定模板识别的条件,如果设为’use_polarity’,则图像中的物体和模板必须有相同的对比度;创建好模板后,这时还需要监视模板,用inspect_shape_model()来完成,它检查参数的适用性,还能帮助找到合适的参数;另外,还需要获得这个模板的轮廓,用于后面的匹配,get_shape_model_contours()则会很容易的帮我们找到模板的轮廓;

⑷ 创建好模板后,就可以打开另一幅图像,来进行模板匹配了。这个过程也就是在新图像中寻找与模板匹配的图像部分,这部分的工作就由函数find_shape_model()来承担了,它也拥有许多的参数,这些参数都影响着寻找模板的速度和精度。这个的功能就是在一幅图中找出最佳匹配的模板,返回一个模板实例的长、宽和旋转角度。其中参数SubPixel决定是否精确到亚像素级,设为’interpolation’,则会精确到,这个模式不会占用太多时间,若需要更精确,则可设为’least_square’,’lease_square_high’,但这样会增加额外的时间,因此,这需要在时间和精度上作个折中,需要和实际联系起来。比较重要的两个参数是MinSocre和Greediness,前一个用来分析模板的旋转对称和它们之间的相似度,值越大,则越相似,后一个是搜索贪婪度,这个值在很大程度上影响着搜索速度,若为0,则为启发式搜索,很耗时,若为1,则为不安全搜索,但最快。在大多数情况下,在能够匹配的情况下,尽可能的增大其值。

⑸ 找到之后,还需要对其进行转化,使之能够显示,这两个函数vector_angle_to_rigid()和affine_trans_contour_xld()在这里就起这个作用。前一个是从一个点和角度计算一个刚体仿射变换,这个函数从匹配函数的结果中对构造一个刚体仿射变换很有用,把参考图像变为当前图像。
其详细的流程图和中间参数,如下图所示:(无法上传)

2.       基于形状匹配的参数关系与优化

在HALCON的说明资料里讲到了这些参数的作用以及关系,在上面提到的文章中也作了介绍,这里主要是重复说明一下这些参数的作用,再强调一下它们影响匹配速度的程度;

在为了提高速度而设置参数之前,有必要找出那些在所有测试图像中匹配成功的设置,这时需考虑以下情况:

①     必须保证物体在图像边缘处截断,也就是保证轮廓的清晰,这些可以通过形态学的一些方法来处理;

②     如果Greediness值设的太高,就找不到其中一些可见物体,这时最后将其设为0来执行完全搜索;

③     物体是否有封闭区域,如果要求物体在任何状态下都能被识别,则应减小MinScore值;

④     判断在金字塔最高级上的匹配是否失败,可以通过find_shape_model()减小NumLevels值来测试;

⑤     物体是否具有较低的对比度,如果要求物体在任何状态下都能被识别,则应减小MinContrast值;

⑥     判断是否全局地或者局部地转化对比度极性,如果需要在任何状态下都能被识别,则应给参数Metric设置一个合适的值;

⑦     物体是否与物体的其他实例重叠,如果需要在任何状态下都能识别物体,则应增加MaxOverlap值;

⑧     判断是否在相同物体上找到多个匹配值,如果物体几乎是对称的,则需要控制旋转范围;

如何加快搜索匹配,需要在这些参数中进行合理的搭配,有以下方法可以参考:

①       只要匹配成功,则尽可能增加参数MinScore的值;

②       增加Greediness值直到匹配失败,同时在需要时减小MinScore值;

③       如果有可能,在创建模板时使用一个大的NumLevels,即将图像多分几个金字塔级;

④       限定允许的旋转范围和大小范围,在调用find_shape_model()时调整相应的参数;

⑤       尽量限定搜索ROI的区域;

除上面介绍的以外,在保证能够匹配的情况下,尽可能的增大Greediness的值,因为在后面的实验中,用模板匹配进行视频对象跟踪的过程中,这个值在很大程度上影响到匹配的速度。

当然这些方法都需要跟实际联系起来,不同图像在匹配过程中也会有不同的匹配效果,在具体到某些应用,不同的硬件设施也会对这个匹配算法提出新的要求,所以需要不断地去尝试。在接下来我会结合自己做的具体的实验来如何利用HALCON来进行实验,主要是在视频对象分割和视频对象的跟踪方面。

转载:基于HALCON的模板匹配方法总结的更多相关文章

  1. 基于HALCON的模板匹配方法总结

    注:很抱歉,忘记从转载链接了,作者莫怪.... 基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多 ...

  2. 基于HALCON的模板匹配方法总结 (转)

    很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇& ...

  3. Halcon中模板匹配方法的总结归纳

    基于组件的模板匹配: 应用场合:组件匹配是形状匹配的扩展,但不支持大小缩放匹配,一般用于多个对象(工件)定位的场合. 算法步骤: 1.获取组件模型里的初始控件 gen_initial_componen ...

  4. halcon三种模板匹配方法

    halcon有三种模板匹配方法:即Component-Based.Gray-Value-Based.Shaped_based,分别是基于组件(或成分.元素)的匹配,基于灰度值的匹配和基于形状的匹配,此 ...

  5. Halcon编程-基于形状特征的模板匹配

    halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配.      为了在右图中,定位图中的三 ...

  6. 使用Opencv中matchTemplate模板匹配方法跟踪移动目标

    模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...

  7. 转载 -- 基于原生JS与OC方法互相调用并传值(附HTML代码)

    最近项目里面有有个商品活动界面,要与web端传值,将用户在网页点击的商品id 传给客户端,也就是js交互,其实再说明白一点就是方法的互相调用而已. 本文叙述下如何进行原生的JavaScript交互 本 ...

  8. Atitit opencv 模板匹配

    Atitit opencv 模板匹配 1.1. 图片1 1.2. Atitit opencv 模板匹配  6中匹配算法貌似效果区别不大1 1.3. 对模板缩放的影响 一般的缩放可以,太大了就歇菜了.. ...

  9. opencv学习之路(21)、模板匹配及应用

    一.模板匹配概念 二.单模板匹配 #include "opencv2/opencv.hpp" #include <iostream> using namespace s ...

随机推荐

  1. zuul网关Filter处理流程及异常处理

    本文转载自:https://blog.csdn.net/tianyaleixiaowu/article/details/77893822 上一篇介绍了java网关Zuul的简单使用,进行请求路由转发和 ...

  2. SVM的sklearn实现

    转载:豆-Metcalf 1)SVM-LinearSVC.ipynb-线性分类SVM,iris数据集分类,正确率100% """ 功能:实现线性分类支持向量机 说明:可以 ...

  3. Selector空轮询处理(转载)

    https://www.cnblogs.com/my_life/articles/5556939.html Selector空轮询处理 在NIO中通过Selector的轮询当前是否有IO事件,根据JD ...

  4. 静态路由、Track与NQA联动配置举例

    原文: http://www.h3c.com/cn/d_201708/1018729_30005_0.htm#_Toc488338732 1.6.4  静态路由.Track与NQA联动配置举例 1. ...

  5. Jmeter(三十一)Jmeter Question 之 乱码解读

    众所周知,编码的问题影响着众多开发者,当然见多不怪. 先扒了一个编码的原因,也就是为什么要编码: 计算机中存储信息的最小单元是一个字节即 8 个 bit,所以能表示的字符范围是 0~255 个 人类要 ...

  6. bootstraptable学习(2)分页

    1.分页需要配置一些参数 function init() { $('#bootstrapModel').bootstrapTable({ url: "../Listing.ashx" ...

  7. mysql 删除表 外键出错

    MySQL库中有俩表,table1和table2,相互关联,在删除表的时候出错: Cannot delete or update a parent row: a foreign key constra ...

  8. UE4 几个好用的插件和Wiki教程

    转自:http://blog.csdn.net/u014532636/article/details/72729881 https://github.com/ue4plugins/LoadingScr ...

  9. Shiro 五张表

    参考博客: http://blog.csdn.net/frankcheng5143/article/details/50836619 Filter:运行过程中改变进入资源的请求和资源返回的响应中的有效 ...

  10. 第8章 传输层(7)_TCP连接管理

    7. TCP连接管理 7.1 TCP的连接建立 (1)三次握手 ①三次握手过程 A.第1.2次握手,数据包的SYN均为1,表示用于同步.即第1次客户端发起请求,并将自己的连接参数(如接收窗口大小.MS ...