FWT学习笔记
FWT学习笔记
引入
一般的多项式乘法是这样子的:
\(c_i=\sum_{i,j}a_j*b_k*[j+k==i]\)
但是如果我们将这个乘法式子里面的+号变换一下变成其他的运算符号呢?
\(c_i=\sum_{i,j}a_j*b_k*[j\oplus k==i]\)
其中\(\oplus\)可以取\(and,or,xor\)
这个时候FFT和NTT就没有什么用了...
前人的智慧是无穷的!
考虑一个神奇的算法:FWT(快速沃尔什变化)
or卷积
先从最容易的or卷积下手.
我们考虑他给出的式子:
\(c_i=\sum_{i,j}a_j*b_k*[i|j==k]\)
我们将i,j按照二进制拆开,发现这其实相当于是一个状压dp?
然后就可以直接搞了(因为这个二进制有传递的效果.)
上面是废话...
考虑怎么求这个玩意:
用一个式子:
\(FWT(A)=\begin{cases}(FWT(A_0),FWT(A_0+A_1)) & n\gt0 \\ A & n=0\end{cases}\)
这个证明不会(真的菜)
然后只要把这个套进去就可以了(或还是比较简单)
然后就好了啊.qwq
and卷积
这个东西的话其实和or没有什么比较大的区别:
\(FWT(A)=\begin{cases}(FWT(A_0+A_1),FWT(A_1)) & n\gt0 \\ A & n=0\end{cases}\)
xor卷积
\(FWT(A)=\begin{cases}(FWT(A_0)+FWT(A_1),FWT(A_0)-FWT(A_1)) & n>0\\A & n=0\end{cases}\)
证明的坑以后会补的.
IFWT
考虑FFT我们怎么做的?
肯定是先把\(FFT(C)=FFT(A)*FFT(B)\)(这个是逐位乘)
然后再还原对吧.
所以FWT也需要还原.
然后既然怎么来的推出来了,怎么回去也就会了不是吗?
代码实现
namespace cpp1{
int A[N],B[N],limit;
void init(){
limit=len;
for(int i=0;i<limit;i++)A[i]=a[i];
for(int i=0;i<limit;i++)B[i]=b[i];
}
void FMT(int *A,int limit,int opt){
for(int i=1;i<limit;i<<=1)
for(int j=0;j<limit;j++)
if(i&j)
if(opt==1)A[j]=(A[j]+A[j^i])%Mod;
else A[j]=(A[j]+Mod-A[j^i])%Mod;
}
void solve(){
FMT(A,limit,1);FMT(B,limit,1);
for(int i=0;i<limit;i++)A[i]=(1ll*A[i]*B[i])%Mod;
FMT(A,limit,-1);
for(int i=0;i<limit;i++)printf("%d%c",A[i],i==limit-1?'\n':' ');
}
}
namespace cpp2{
int A[N],B[N],limit;
void init(){
limit=len;
for(int i=0;i<limit;i++)A[i]=a[i];
for(int i=0;i<limit;i++)B[i]=b[i];
}
void FWTand(int *a,int limit,int opt){
for(int i=1;i<limit;i<<=1)
for(int j=0,p=i<<1;j<limit;j+=p)
for(int k=0;k<i;k++)
if(opt==1)a[j+k]=(a[j+k]+a[i+j+k])%Mod;
else a[j+k]=(a[j+k]-a[i+j+k]+Mod)%Mod;
}
void solve(){
FWTand(A,limit,1);FWTand(B,limit,1);
for(int i=0;i<limit;i++)A[i]=(1ll*A[i]*B[i])%Mod;
FWTand(A,limit,-1);
for(int i=0;i<limit;i++)printf("%d%c",A[i],i==limit-1?'\n':' ');
}
}
namespace cpp3{
int A[N],B[N],limit,inv2=499122177;
void init(){
limit=len;
for(int i=0;i<limit;i++)A[i]=a[i];
for(int i=0;i<limit;i++)B[i]=b[i];
}
void FWTxor(int *a,int limit,int opt){
for(int i=1;i<limit;i<<=1)
for(int p=i<<1,j=0;j<limit;j+=p)
for(int k=0;k<i;k++){
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%Mod;a[i+j+k]=(X+Mod-Y)%Mod;
if(opt==-1){
a[j+k]=1ll*a[j+k]*inv2%Mod;
a[i+j+k]=1ll*a[i+j+k]*inv2%Mod;
}
}
}
void solve(){
FWTxor(A,limit,1);FWTxor(B,limit,1);
for(int i=0;i<limit;i++)A[i]=(1ll*A[i]*B[i])%Mod;
FWTxor(A,limit,-1);
for(int i=0;i<limit;i++)printf("%d%c",A[i],i==limit-1?'\n':' ');
}
}
FWT学习笔记的更多相关文章
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- FWT 学习笔记
FWT学习笔记 好久以前写的,先粘上来 定义数组 \(n=2^k\) \(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\) 令\(A_0=[a_0,a_1,a_2,...,a_{\f ...
- FMT/FWT学习笔记
目录 FMT/FWT学习笔记 FMT 快速莫比乌斯变换 OR卷积 AND卷积 快速沃尔什变换(FWT/XOR卷积) FMT/FWT学习笔记 FMT/FWT是算法竞赛中求or/and/xor卷积的算法, ...
- $\text {FWT}$学习笔记
\(\text {FWT}\) 学习笔记 正常项的\(\text {FWT}\) 在\(\text {OI}\)中,我们经常会碰到这种问题: 给出一个长度为\(n\)的序列\(a_{1,2,...,n ...
- 快速沃尔什变换 (FWT)学习笔记
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 卷积理论 & 高维FWT学习笔记
之前做了那么多生成函数和多项式卷积的题目,结果今天才理解了优化卷积算法的实质. 首先我们以二进制FWT or作为最简单的例子入手. 我们发现正的FWT or变换就是求$\hat{a}_j=\sum_{ ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
随机推荐
- Elastix GOIP 网关配合
方案一 Gateway disallow=allallow=alaw&ulawcanreinvite=nodtmfmode=rfc2833host=192.168.1.108insecure= ...
- JavaScript学习笔记:基础知识点总结
基础概念 JavaScript(以下简称Js)中数据类型:Number 字符串 布尔值 数组 对象(Js的对象是一组由键值对组成的无序集合) Js中基础概念:变量(概念和Java中变量概念类似 指示某 ...
- mybatis学习二 全局配置文件常用配置
全局配置文件的详细解析可以参考mybatis的中文参考文档 1.全局配置文件中内容1.1 <transactionManager/> type 属性可取值1.1.1 JDBC,事务管理使用 ...
- js 分页
html代码: <div id="paging_wrap" class="paging-wrap"></div> css代码: div ...
- 如何使用GCC生成动态库和静态库
根据链接时期的不同,库又有静态库和动态库之分.静态库是在链接阶段被链接的,所以生成的可执行文件就不受库的影响,即使库被删除,程序依然可以成功运行.而动态库是在程序执行的时候被链接的.程序执行完,库仍需 ...
- 2018.11.16 bzoj4827: [Hnoi2017]礼物(ntt)
传送门 nttnttntt 入门题. 考虑展开要求的式子∑i=0n−1(xi−yi−c)2\sum_{i=0}^{n-1}(x_i-y_i-c)^2∑i=0n−1(xi−yi−c)2 => ...
- SQL之GROUP BY 语句
合计函数 (比如 SUM) 常常需要添加 GROUP BY 语句. GROUP BY 语句 GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组. SQL GROUP BY 语法 ...
- Mybatis-Plus 实战完整学习笔记(三)------导入MybatisPlus环境
1.dao层接口引入 package com.baidu.www.mplus.mapper; import com.baidu.www.mplus.bean.Employee; import com. ...
- 在eclipse上搭建Roku开发环境
环境:Oracle VM virtualBox+Ubuntu server 12.0.4.2 LTS+xfce+ Eclipse IDE for C/C++ Developers 4.3.2 参考:h ...
- 2.2.2synchronized同步代码块的使用
当两个并发线程访问同一个对象object中的synchronized(this)同步代码块时,一段时间内只能有一个线程执行,另一个线程必须等待期执行完才能执行. package com.cky.bea ...