Maximum Likelihood及Maximum Likelihood Estimation
1、What is Maximum Likelihood?
极大似然是一种找到最可能解释一组观测数据的函数的方法。
Maximum Likelihood is a way to find the most likely function to explain a set of observed data.
在基本统计学中,通常给你一个模型来计算概率。例如,你可能被要求找出X大于2的概率,给定如下泊松分布:X ~ Poisson (2.4)。在这个例子中,已经给定了你泊松分布的参数 λ(2.4),在现实生活中,您没有这么奢侈,因为您没有确定参数的模型:您必须将数据与模型相匹配。这就是最大可能性(MLE)的作用。在统计学中,最大似然估计(maximum likelihood estimation, MLE)是在给定观测值的情况下估计统计模型参数的一种方法。MLE试图在给定观测值的情况下找到使似然函数最大化的参数值。得到的估计称为最大似然估计,也缩写为MLE。
In elementary statistics, you are usually given a model to find probabilities. For example, you might be asked to find the probability that X is greater than 2, given the following Poisson distribution:
X ~ Poisson (2.4)
In this example, you are given the parameter, λ, of 2.4 for the Possion distribution. In real life, you don’t have the luxury of having a model given to you: you’ll have to fit your data to a model. That’s where Maximum Likelihood (MLE) comes in.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model, given observations. MLE attempts to find the parameter values that maximize the likelihood function, given the observations. The resulting estimate is called a maximum likelihood estimate, which is also abbreviated as MLE.
MLE采用已知的概率分布模型(如正态分布),并将数据集与这些分布进行比较,以便找到数据的合适匹配。一个分布模型对应的参数可以有无穷个。例如正态分布的均值可以是0,也可以是100亿以上。最大似然估计是找到最可能生成待测样本的总体参数的一种方法。数据与模型的匹配程度称为“拟合优度”。
MLE takes known probability distributions (like the normal distribution) and compares data sets to those distributions in order to find a suitable match for the data. A Family of distributions can have an infinite amount of possible parameters. For example, the mean of the normal distribution could be equal to zero, or it could be equal to ten billion and beyond. Maximum Likelihood Estimation is one way to find the parameters of the population that is most likely to have generated the sample being tested. How well the data matches the model is known as “Goodness of Fit.”
例如,研究人员可能有兴趣找出吃特定食物的老鼠的平均体重增加。研究人员无法测量每只老鼠的体重,所以只能取样。大鼠体重增加呈正态分布;最大似然估计可用于求基于该样本的总体增重的均值和方差
For example, a researcher might be interested in finding out the mean weight gain of rats eating a particular diet. The researcher is unable to weigh every rat in the population so instead takes a sample. Weight gains of rats tend to follow a normal distribution; Maximum Likelihood Estimation can be used to find the mean and variance of the weight gain in the general population based on this sample
MLE根据似然函数的最大值来选择模型参数。
MLE chooses the model parameters based on the values that maximize the Likelihood Function.
2、The Likelihood Function(似然函数,是一种表示概率的方法;似然表示得到样本的概率;最大似然表示的是得到样本最大概率的参数)
给定一个特定的概率分布模型,样本的似然是得到样本的概率。似然函数是一种表示概率的方法:最大概率得到样本的参数是最大似然估计。
一句话:似然表示概率;似然函数表示得到概率的方法;最大似然表示的得到最大概率的参数
The likelihood of a sample is the probability of getting that sample, given a specified probability distribution model. The likelihood function is a way to express that probability: the parameters that maximize the probability of getting that sample are the Maximum Likelihood Estimators.
假设你有一组从一个未知分布参数Θ的总体得到的随机变量X1, X2…Xn。该分布的概率密度函数(PDF) f(Xi,Θ)模型,Xi是随机变量的集合,Θ是未知参数。最大似然函数你想知道Θ最可能的值是什么,得到随机变量Xi。本例的联合概率密度函数为:
Let’s suppose you had a set of random variables X1, X2…Xn taken from an unknown population distribution with parameter Θ. This distribution has a probability density function (PDF) of f(Xi,Θ) where f is the model, Xi is the set of random variables and Θ is the unknown parameter. For the maximum likelihood function you want to know what the most likely value for Θ is, given the set of random variables Xi. The joint probability density function for this example is:

3、The Basic Idea
It seems reasonable that a good estimate of the unknown parameter θ would be the value of θ that maximizes the probability, errrr... that is, the likelihood... of getting the data we observed. (So, do you see from where the name "maximum likelihood" comes?) So, that is, in a nutshell, the idea behind the method of maximum likelihood estimation. But how would we implement the method in practice? Well, suppose we have a random sample X1, X2,..., Xn for which the probability density (or mass) function of each Xi is f(xi; θ). Then, the joint probability mass (or density) function of X1, X2,..., Xn, which we'll (not so arbitrarily) call L(θ) is:

The first equality is of course just the definition of the joint probability mass function. The second equality comes from that fact that we have a random sample, which implies by definition that the Xi are independent. And, the last equality just uses the shorthand mathematical notation of a product of indexed terms. Now, in light of the basic idea of maximum likelihood estimation, one reasonable way to proceed is to treat the "likelihood function" L(θ) as a function of θ, and find the value of θ that maximizes it.
4、example1
假设权重随机选择的美国女大学生与未知的正态分布均值μ和标准差σ。随机抽取的10名美国女大学生的体重(以磅为单位)如下:
115 122 130 127 149 160 152 138 149 180
根据上面给出的定义,识别似然函数和μ的极大似然估计量,所有的美国女大学生的平均重量。使用给定的样本,找到一个最大似然估计的μ。
Based on the definitions given above, identify the likelihood function and the maximum likelihood estimator of μ, the mean weight of all American female college students. Using the given sample, find a maximum likelihood estimate of μ as well.
5、example2
Suppose we have a random sample X1, X2,..., Xn where:
- Xi = 0 if a randomly selected student does not own a sports car, and
- Xi = 1 if a randomly selected student does own a sports car.
Assuming that the Xi are independent Bernoulli random variables with unknown parameter p, find the maximum likelihood estimator of p, the proportion of students who own a sports car.




6、文献
https://newonlinecourses.science.psu.edu/stat414/node/191/(写的很好,里面有很多的例子)
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://www.statisticshowto.datasciencecentral.com/maximum-likelihood-estimation/
Maximum Likelihood及Maximum Likelihood Estimation的更多相关文章
- MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
- likelihood(似然) and likelihood function(似然函数)
知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真 ...
- [Bayes] Understanding Bayes: A Look at the Likelihood
From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note ...
- [LeetCode] Maximum Depth of Binary Tree 二叉树的最大深度
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
- LeetCode 104. Maximum Depth of Binary Tree
Problem: Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along ...
- [LintCode] Maximum Depth of Binary Tree 二叉树的最大深度
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
- [Leetcode][JAVA] Minimum Depth of Binary Tree && Balanced Binary Tree && Maximum Depth of Binary Tree
Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth is the n ...
- LeetCode:Maximum Depth of Binary Tree_104
LeetCode:Maximum Depth of Binary Tree [问题再现] Given a binary tree, find its maximum depth. The maximu ...
随机推荐
- 2012年第三届蓝桥杯Java本科组省赛试题解析
题目地址:https://wenku.baidu.com/view/326f7b4be518964bcf847c96.html?rec_flag=default => 百度文档 题目及解析 ...
- [UGUI]图文混排(六):点击区域
点击区域可以分成两部分来分析: 0.Rect 搜索api:Rect和Rect.Rect,可以知道: 在GUI和GUILayout中,Rect的原点在左上角,向右为x轴正方向,向下为y轴正方向: 除此之 ...
- Java课程作业之动手动脑(四)
1.继承条件下的构造方法调用 class Grandparent { public Grandparent() { System.out.println("GrandParent Creat ...
- [记录] 解决img的1px空白问题
第一种解决方案:把img变成块元素:display:block: 第二种解决方案:修改一下它的垂直对齐方式:vertical-align:middle: 第三种解决方案:使用浮动,让他漂浮起来:flo ...
- php实现单点登录实例
1.准备两个虚拟域名 127.0.0.1 www.a.com127.0.0.1 www.b.com 2.在a的根目录下创建以下文件 1 //index.php 2 3 <?php 4 sessi ...
- react-native获取设备信息app版本信息,react-native-device-info
安装 yarn add react-native-device-info react-native link react-native-device-info link 之后就可以直接使用了,ios ...
- CSS3 之转动的风车
js 可以做动画,但是需要写很多代码:其实css也是可以做动画的,而且比js写的代码还少,理解也相对简单. 这里用到css3 的animation 属性,它配合着 @keyframes 规则来使用,可 ...
- HTTP、TCP、IP协议常见面试题
前言:在看面试题之前,先了解一下基本定义. HTTP.TCP.IP协议基本定义 HTTP: (HyperText Transport Protocol)是超文本传输协议的缩写,它用于传送WWW方式的数 ...
- Linux:简单的并发服务器实现
我前两天实现了一个简单的服务器和一个对应的客户端,也简单的解决了一些错误检查和常用的函数的封装,但是那个服务器的一次只能连接一个客户端,鸡肋,太鸡肋了,今天我来实现可以连接多个客户端的服务器实例:多进 ...
- UNITY2018 真机开启deepprofiling的操作
手机上运行游戏并开启deepprofiling的命令如下 命令一:adb shell am start -n com.szyh.YHP1.kaopu/com.szyh.YHP1.kaopu.MainA ...
