创建窗口的基础上,添加代码实现三角形的绘制。

声明和定义变量

在屏幕上绘制一个三角形需要的变量有:

  1. 三角形的三个顶点坐标;
  2. Vertex Buffer Object 将顶点数据存储在GPU的内存中;
  3. Vertex Array Object存储对顶点属性的配置和与顶点属性相关的VBO。在需要绘制的对象数量和顶点属性很多的情况下,VAO的使用能够大大减小工作量;
  4. Vertex Shader将顶点作为输入,对顶点坐标进行变换并输出。在编写Vertex Shader源码时,要将顶点的非齐次坐标变换成齐次坐标,只需要添加w分量即可;
  5. Fragment Shader计算三角形对应像素点的颜色,为了方便,将像素点颜色全部设置成(1, 0.5, 0.2);
  6. Shader Program由多个Shader链接后得到。
float vertices[] = {-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
0.0f, 0.5f, 0.0f};
unsigned int VBO;
unsigned int VAO;
int vertexShader;
const char *vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 Pos;"
"void main()"
"{gl_Position = vec4(Pos.x, Pos.y, Pos.z, 1.0f);}";
int fragmentShader;
const char *fragmentShaderSource = "#version 330 core\n"
"out vec4 fragColor;"
"void main()"
"{fragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);}";
int shaderProgram;

绘制一个对象的过程略繁琐,可以拆分成几个部分:

  1. 创建Vertex Shader并编译源码;
  2. 创建Fragment Shader并编译源码;
  3. 链接Vertex Shader和Fragment Shader得到Shader Program;
  4. 创建VAO
  5. 创建VBO
  6. 绑定和配置顶点属性指针

创建Vertex Shader并编译源码

调用glCreateShader函数创建一个Shader对象,传递参数GL_VERTEX_SHADER使该对象为Vertex Shader对象。

调用glShaderSource函数将Vertex Shader源码附加到Shader对象上。

调用glCompileShader函数编译源码。

vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader);

创建Fragment Shader并编译源码

和上一步的区别在于传递参数不同。

fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
glCompileShader(fragmentShader);

链接Shader

调用glCreateProgram函数创建Shader Program对象。

调用两次glAttachShader函数将Shader附加到Shader Program对象上。

调用glLinkProgr函数进行链接。

shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);

链接成功后调用glDeleteShader函数移除Shader对象,释放被占用的资源。

glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);

创建VAO

glGenVertexArrays函数用来创建VAO,并生成对象ID。第一个参数指定需要创建的VAO数量。

glGenVertexArrays(1, &VAO);

创建VBO

和创建VAO类似,调用glGenBuffers函数创建VBO。

glGenBuffers(1, &VBO);

绑定和配置顶点属性指针

绑定VAO

调用glBindVertexArray函数绑定VAO,接下来对顶点属性的使能、顶点属性指针的配置和相应的VBO,都将存储在这个VAO中。

需要解绑当前VAO时,将参数设置为0即可。

glBindVertexArray(VAO);

配置VBO

VBO的Buffer类型是GL_ARRAY_BUFFER,通过调用glBindBuffer函数绑定VBO和GL_ARRAY_BUFFER。

之后,当再次调用GL_ARRAY_BUFFER,便可完成对VBO的配置。glBufferData函数能够把顶点数据复制到Buffer内存中供GPU使用。

glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

配置顶点属性指针

当顶点数据被复制到Buffer内存中之后,还需要配置对顶点数据的解析。就是告诉GPU,Vertex Shader的哪一个顶点属性,对应着Buffer中的哪一部分数据。

在编写Vertex Shader源码时,只定义了一个顶点属性:位置,该属性的索引为0,因此设置glVertexAttribPointer的第一个参数为0。

每一个顶点数据有x,y,z三个维度,用来表示该顶点的位置,因此glVertexAttribPointer的第二个参数为3。

第三个参数指定顶点数据的类型。第四个参数设置是否需要将顶点数据标准化,即映射到[-1, 1]。

第五个参数指定同一顶点属性的相邻数据之间的步长,这里为3个float类型的长度。

第六个参数指定某一顶点属性下第一个数据的起始位置。

最后调用glEnableVertexAttribArray函数使能该顶点属性。

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

配置完成后,解绑VAO和VBO

glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);

渲染循环

在while循环中添加三个函数,激活Shader Program,绑定VAO并在视口中绘制三角形。

glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawArrays(GL_TRIANGLES, 0, 3);

╮(╯▽╰)╭画个三角形真不容易。。。

完整代码如下:

#include <iostream>
#include <glad/glad.h>
#include <GLFW/glfw3.h> using namespace std; /*
void frambuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
}
*/ void processInput(GLFWwindow* window)
{
//check if ESCAPE is pressed
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
} const unsigned int window_width = 800;
const unsigned int window_height = 600;
//coordnate (x,y,z) of vertices
float vertices[] = {-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
0.0f, 0.5f, 0.0f};
//vertex buffer object(VBO)
unsigned int VBO;
//vertex array object(VAO)
unsigned int VAO;
//vertext shader
int vertexShader;
const char *vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 Pos;"
"void main()"
"{gl_Position = vec4(Pos.x, Pos.y, Pos.z, 1.0f);}";
//fragment shader
int fragmentShader;
const char *fragmentShaderSource = "#version 330 core\n"
"out vec4 fragColor;"
"void main()"
"{fragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);}";
//shader program
int shaderProgram; int main()
{
//initialize GLFW
if(!glfwInit())
return -1; //configure GLFW
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE,GLFW_OPENGL_CORE_PROFILE); //creat a window object
GLFWwindow *window = glfwCreateWindow(window_width, window_height, "OpenGL_Demo", NULL, NULL);
if (window == NULL){
cout << "Failed to create GLFW window" << endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window); //initialize GLAD to manage function pointers for OpenGL
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){
cout << "Failed to initialize GLAD" << endl;
return -1;
} //set width and height of Viewport
glViewport(0, 0, window_width, window_height);
//glfwSetFramebufferSizeCallback(window, frambuffer_size_callback); //compile vertex shader
vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader); //check if compilation of vertex shader is successful
int success;
char infoLog[512];
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if (!success){
glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
cout << "ERROR::VERTEXSHADER::COMPILATION_FAILED\n" << infoLog << endl;
}
else cout << "VERTEXSHADER_COMPILATION_SUCCESS" << endl; //cmpile fragment shader
fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
glCompileShader(fragmentShader); //check if compilation of fragment shader is successful
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
if (!success){
glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
cout << "ERROR::FRAGMENTSHADER::COMPILATION_FAILED\n" << infoLog << endl;
}
else cout << "FRAGMENTSHADER_COMPILATION_SUCCESS" << endl; //link shader program
shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram); //check if linking is successful
glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
if(!success){
glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
cout << "ERROR::LINKING_FAILED\n" << infoLog << endl;
}
else cout << "LINKING_SUCCESS" << endl; //clear resource of shader objects
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader); //generate vertex array objext
glGenVertexArrays(1, &VAO); //generate vertex buffer object
glGenBuffers(1, &VBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); //link vertex attributes
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void*)0);
glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0); //render loop
while(!glfwWindowShouldClose(window)){ processInput(window);
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawArrays(GL_TRIANGLES, 0, 3);
//glBindVertexArray(0);
glfwSwapBuffers(window);
glfwPollEvents();
} //clear resource
glfwTerminate();
return 0;
}

OpenGL学习(2)——绘制三角形的更多相关文章

  1. Android OpenGL 入门示例----绘制三角形和正方形

    Android上对OpenGl的支持是无缝的,所以才有众多3D效果如此逼真的游戏,在Camera的一些流程中也有用到GLSurfaceView的情况.本文记录OpenGL在Android上的入门级示例 ...

  2. Linux OpenGL 实践篇-3 绘制三角形

    本次实践是绘制两个三角形,重点理解顶点数组对象和OpenGL缓存的使用. 顶点数组对象 顶点数组对象负责管理一组顶点属性,顶点属性包括位置.法线.纹理坐标等. OpenGL缓存 OpenGL缓存实质上 ...

  3. iOS OpenGL ES简单绘制三角形

    OpenGL 是用于2D/3D图形编程的一套基于C语言的统一接口. windows,Linux,Unix上均可兼容. OpenGL ES 是在OpenGL嵌入式设备上的版本, android/iOS ...

  4. OpenGL学习(2)——绘制三角形(补)

    对上一篇的补充,通过绘制三角形来完成矩形的绘制.此外,完成章节后练习. 绘制矩形 一个矩形由两个三角形组成,因此绘制矩形需要绘制两个三角形,一共6个顶点,其中2个顶点重复画了两次. 为了减小开销,仅储 ...

  5. OpenGL学习进程(11)第八课:颜色绘制的详解

        本节是OpenGL学习的第八个课时,下面将详细介绍OpenGL的颜色模式,颜色混合以及抗锯齿.     (1)颜色模式: OpenGL支持两种颜色模式:一种是RGBA,一种是颜色索引模式. R ...

  6. OpenGL学习进程(10)第七课:四边形绘制与动画基础

        本节是OpenGL学习的第七个课时,下面以四边形为例介绍绘制OpenGL动画的相关知识:     (1)绘制几种不同的四边形: 1)四边形(GL_QUADS) OpenGL的GL_QUADS图 ...

  7. OpenGL学习进程(4)第二课:绘制图形

    本节是OpenGL学习的第二个课时,下面介绍如何用点和线来绘制图形:     (1)用点的坐标来绘制矩形: #include <GL/glut.h> void display(void) ...

  8. 1.opengl绘制三角形

    顶点数组对象:Vertex Array Object,VAO,用于存储顶点状态配置信息,每当界面刷新时,则通过VAO进行绘制. 顶点缓冲对象:Vertex Buffer Object,VBO,通过VB ...

  9. Android OpenGL ES(十)绘制三角形Triangle .

    三角形为OpenGL ES支持的面,同样创建一个DrawTriangle Activity,定义6个顶点使用三种不同模式来绘制三角形: float vertexArray[] = { -0.8f, - ...

随机推荐

  1. Linux parted命令详解

    parted常见命令参数 Usage: parted [OPTION]... [DEVICE [COMMAND [PARAMETERS]...]...] Apply COMMANDs with PAR ...

  2. fedora安装视频播放器

    添加RPMFusion仓库后才能安装VLC.Mplayer,其他库中没有 直接 sudo dnf install vlc sudo dnf install mplayer

  3. Nginx防hashdos模块使用帮助

    经过上周一周朋友们帮忙测试和bug fix,nginx_http_hashdos_module已经达到可以线上使用的水平,下面是使用记录. 下载 #wget --no-check-certificat ...

  4. 自带hyper -v 或者 Vmware安装Linux centos

    centos系统存在网盘,链接: https://pan.baidu.com/s/1A5ywyLjIegcftaT_xCvPbA 密码: n6v4 https://blog.csdn.net/nanc ...

  5. 2-4 R语言基础 列表

    #列表list > l1 <- list("a",2,10L,3+4i,TRUE) #每个元素没有名字> l1[[1]][1] "a" [[2 ...

  6. linux配置路径PATH问题

    临时:           终端输入          export PATH=/myPath:$PATH  等号左右无空格   永久:           在用户家目录下即-目录,         ...

  7. python-webbrowser模块 浏览器操作

    python的webbrowser模块支持对浏览器进行一些操作,对于爬虫来说是比较基础的知识点 1.主要有以下三个方法: webbrowser.open(url, new=0, autoraise=T ...

  8. 真实的物理机安装Centos7系统后网卡只有lo没有eno1的解决办法:实际上是物理机未安装网驱动卡

    问题症状: 我真实的物理机安装Centos7系统后,在/etc/sysconfig/目录下查看,发现网卡只有lo没有eno1,出现该问题的实际原因是物理机未安装网驱动卡. 解决办法: 不多说了,让我们 ...

  9. WorldWind源码剖析系列:插件类Plugin、插件信息类PluginInfo和插件编译器类PluginCompiler

    插件类Plugin是所有由插件编译器加载的插件子类的抽象父类,提供对插件的轻量级的访问控制功能. 插件信息类PluginInfo用来存储关于某个插件的信息的类,可以理解为对插件类Plugin类的进一步 ...

  10. mysql做了主从,删除binlog日志

    在主服务器操作: 1.查看当前主从库是用哪个binlog日志在做组从 show master status show  slave status 2.查看主库的binlog日志 show master ...