[AHOI2007]密码箱 (数学 + 暴力)
链接:https://ac.nowcoder.com/acm/problem/19877
来源:牛客网
题目描述
输入描述:
输入文件只有一行,且只有一个数字n(1 ≤ n ≤ 2,000,000,000)。
输出描述:
你的程序需要找到所有满足前面所描述条件的x,如果不存在这样的x,你的程序只需输出一行“None”(引号不输出),否则请按照从小到大的顺序输出这些x,每行一个数。
析:根据题意,很容易就能列出一个式子 x^2 % n = 1 也就是 x^2 = k*n + 1 再变形得到 x^2 - 1 = k * n,再变形,(x+1)(x-1) = k * n,得到这个式子,我就能从中得到一些信息,(x - 1) 和 (x + 1),必然包括 n 的所有的素因子,我们可以把 n 的所有素因子分成两份,一份给 (x-1)假设是 a, 一份给 (x+1),假设是b,然后再给a 和 b 随便配系数,假设是x,y,这样得到的积一定是 n 的倍数,并且配的系数还满足ax-by=2,或者ay-bx=2,直接枚举b(假设b是相比a来说更大的数)的倍数,然后判断能不能一个整数的x。注意要使用long long ,在计算过程中可能会超过int。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n, m; int main(){
cin >> n;
set<int> ans;
for(int i = 1; i * i <= n; ++i) if(n % i == 0){
int a = i, b = n / i; // a <= b
for(long long j = 0; j <= n; j += b){
if(j >= 2 && (j-2) % a == 0) ans.insert(j - 1);
if(j < n && (j + 2) % a == 0) ans.insert(j + 1);
}
}
if(ans.empty()) cout << "None" << endl;
else for(auto &x : ans) cout << x << endl;
return 0;
}
[AHOI2007]密码箱 (数学 + 暴力)的更多相关文章
- BZOJ_1406_[AHOI2007]密码箱_枚举+数学
BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- 1406: [AHOI2007]密码箱
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1591 Solved: 944[Submit][Status][ ...
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- bzoj1406: [AHOI2007]密码箱
数学. x^2 % n = 1 则 (x+1)(x-1) = kn. 设 x+1 = k1*n1, x-1=k2*n2. 则 k1*k2=k , n1*n2=n. 算出每个大于sqrt(n)的约数,然 ...
- 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)
传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod  nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...
- HDU 2058 The sum problem (数学+暴力)
题意:给定一个N和M,N表示从1到N的连续序列,让你求在1到N这个序列中连续子序列的和为M的子序列区间. 析:很明显最直接的方法就是暴力,可是不幸的是,由于N,M太大了,肯定会TLE的.所以我们就想能 ...
随机推荐
- P5441 【XR-2】伤痕
Luogu5441 有 \(n\) 个点 ( \(n\) 为奇数 , \(n \le 99\) ) 的完全图 , 其中可以有最多 \(n\) 条无向边 , 其他都是有向边 . 如果对于某四个点不经过这 ...
- [OpenBenchMarking] AMD CPU 的性能简单对比
来源: https://openbenchmarking.org/result/1710193-AL-EPYC7351P64 1. 2. 3. 4.
- 【Jmeter源码解读】001——目录结构
1.顶层目录 bin - 包含.bat 和 . sh 这些文件用于启动JMeter.同时也包含了ApacheJmeter.jar 和 相关的配置文件 build - build 脚本创建的目录,存放一 ...
- 基于NIO写的阻塞式和非阻塞式的客户端服务端
由于功能太过简单,就不过多阐述了,直接上阻塞式代码: package com.lql.nio; import org.junit.Test; import java.io.IOException; i ...
- ubuntu 拨号上网
如果没有安装的用户,可以使用 sudo apt-get install pppoe pppoeconf 然后配置上网 sudo pppoeconf 最后,使用 sudo pon dsl-provide ...
- centos7.2 安装Lnmp
1. 安装编译工具及库文件 yum install -y make apr* autoconf automake curl \ curl-devel gcc gcc-c++ cmake gtk+-d ...
- 6.Linux查看哪个进程占用磁盘IO
$ iotop -oP命令的含义:只显示有I/O行为的进程
- 空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解
空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解 2018年11月14日 17:05:41 Rosemary_tu 阅读数 1295更多 分类专栏: 计算机视觉 版权声明:本文为博主原 ...
- 怎样通过CSS选择器获取元素节点或元素节点集合
使用 document.querySelector() 和 document.querySelectorAll(), 将 CSS选择器 作为参数传入即可. // 标签选择器 document.quer ...
- 关于如何查看 MySQL 信息、查看Oracle 版本
方法一: 进入mysql cmd, mysql -u root status; 将显示当前mysql的version的各种信息. 方法二: 还是在mysql的cmd下,输入: select versi ...