[hdoj6415 Rikka with Nash Equilibrium][dp]
http://acm.hdu.edu.cn/showproblem.php?pid=6415
Rikka with Nash Equilibrium
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 2021 Accepted Submission(s): 857
Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta's number and j be Rikka's number, the final score of the game is Ai,j.
In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.
For example, when n=m=3 and matrix A is
If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.
A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y) is a Nash equilibrium if and only if:
In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).
To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.
Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.
The first line of each testcase contains three numbers n,m and K(1≤n,m≤80,1≤K≤109).
The input guarantees that there are at most 3 testcases with max(n,m)>50.
3 3 100
5 5 2333
1170
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[][][];
int pre[][];
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
memset(dp,,sizeof(dp));
dp[][][]=n*m;
for(int q=;q<=n*m;q++){
for(int i=min(n,q);i>=;i--){
for(int j=min(m,q-i+);j>=;j--){
if(i*j<q-)break;
dp[i][j][]=(dp[i][j][]+dp[i][j][]+dp[i][j][])%k*((i*j)-(q-))%k;
dp[i][j][]=(dp[i-][j][]+dp[i-][j][]+dp[i-][j][])%k*(n*j-(i-)*j)%k;
dp[i][j][]=(dp[i][j-][]+dp[i][j-][]+dp[i][j-][])%k*(m*i-i*(j-))%k;
}
}
}
printf("%lld\n",(dp[n][m][]+dp[n][m][]+dp[n][m][])%k);
}
return ;
}
注意:这道题如果不通过判断某些条件及时跳出循环就会T掉
[hdoj6415 Rikka with Nash Equilibrium][dp]的更多相关文章
- 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- hdu6415 Rikka with Nash Equilibrium (DP)
题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...
- hdu-6415 Rikka with Nash Equilibrium dp计数题
http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...
- HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium
[HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快
- HDU6415 Rikka with Nash Equilibrium
HDU6415 Rikka with Nash Equilibrium 找规律 + 大数 由于规律会被取模破坏,所以用了java 找出规律的思路是: 对于一个n*m的矩阵构造,我先考虑n*1的构造,很 ...
- HDU 6415 Rikka with Nash Equilibrium (计数DP)
题意:给两个整数n,m,让你使用 1 ~ n*m的所有数,构造一个矩阵n*m的矩阵,此矩阵满足:只有一个元素在它的此行和此列中都是最大的,求有多种方式. 析:根据题意,可以知道那个元素一定是 n * ...
- 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...
- HDU 6092 17多校5 Rikka with Subset(dp+思维)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
随机推荐
- pytorch中F.softmax(x1,dim = -1) dim 取值测试及验证
# -*- coding: utf-8 -*- """ Created on Mon May 27 11:09:52 2019 @author: jiangshan &q ...
- Google 安装 Elasticsearch-head 插件
下载插件:https://github.com/liufengji/es-head 安装插件: google --->更多工具---->扩展程序 将解压的elasticsearch-hea ...
- 《Mysql - 为什么表数据删掉一半,表文件大小不变?》
一:概念 - 这里,我们还是针对 MySQL 中应用最广泛的 InnoDB 引擎展开讨论. - 一个 InnoDB 表包含两部分,即:表结构定义和数据. - 在 MySQL 8.0 版本以前,表结构是 ...
- HTTP最常见的响应头
HTTP最常见的响应头如下所示: l Allow:服务器支持哪些请求方法(如GET.POST等): l Content-Encoding:文档的编码(Encode)方法 ...
- WebElement的方法:
这个类代表HTML页面元素 id_ #当前元素的ID tag_name #获取元素标签名的属性 text #获取该元素的文本. click() #单击(点击)元素 submit() #提交表单 cle ...
- Python复习笔记02
语句表达式: 在Python中支持遍历循环的对象:可迭代器对象,支持迭代协议的对象 比如列表list没有迭代功能只是可迭代对象 迭代:迭代协议 --> 例:f.__next__() 属于f的迭代 ...
- TODO页面
功能:1.根据数据显示当前所未完成的事件, 2.可通过输入框进行事件的添加,可标记已完成的事件并进行删除,可修改已添加的事件. ps:插件引入均使用本地文件,需改用静态CDN. 效果: 代码实现: & ...
- MySQL: Can’t connect to MySQL server on (111 “Connection refused”)
1. Mysql连接问题 远程访问mysql或者通过docker访问宿主机mysql经常会碰到下面的问题: Can't connect to MySQL server on (111 "Co ...
- 11.ForkJoinPool 分支/合并框架 (工作窃取)
/*ForkJoinPool 分支/合并框架 (工作窃取)*/ Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork) 成若干个小任务(拆到给出的临界值为止),再将一个个的小 ...
- 【hadoop】细读MapReduce的工作原理
前言:中秋节有事外加休息了一天,今天晚上重新拾起Hadoop,但感觉自己有点烦躁,不知后续怎么选择学习Hadoop的方法. 干脆打开电脑,决定: 1.先将Hadoop的MapReduce和Yarn基本 ...