Problem G. Colors Overflow
Input file: standard input
Output file: standard output
Balloon Color: Dark Green
If there is one thing Ziad is good at, it’s creating new colors. In order to use his magical skill to its limit,
he decided to start a new career in painting. In order to do so he asked Joud to help him.
Joud presented Ziad with an infinite length line. Initially all points of the line are colorless. After examining
the line, Ziad noticed that it’s not an ordinary line. Even if a point is painted multiple times, it keeps all
the colors without mixing them, and when looking at it you can clearly see all the colors separated.
In order to test Ziad’s skills Joud presented him also with Q queries. Each query is of the type "t L R".
Queries can be of the following two types, depending on the value of t:
1. "1 L R"This is a task for Ziad to color each sub-segment of the range [L, R] inclusive, each with a
unique color that has never been used before. For example when asked to paint the range [3, 6] he will
paint segments [3 3], [3 4], [3 5], [3 6], [4 4], [4 5], [4 6], [5, 5], [5 6] and [6 6], each of them with a unique
color that has never been used before.
2. "2 L R"This query means Ziad has to look at the range [L, R] inclusive, and write down the number
of different colors that appear inside the range.
Anyways, Ziad is a little busy packing sugar and tea for his trip to be a judge, so he asked for your help
answering these queries.

Input

The first line contains a single integer T, denoting the number of test cases.

Each test case start with a line containing an integer Q (1 ≤ Q ≤ 105), denoting the number of queries.

The next line contains Q lines describe the queries. Each line has one query of the form "t L R"(1 ≤ t ≤ 2)

(1 ≤ L ≤ R ≤ 105).

Output

For each test case and for each query of the second type, print a single line, indicating the number of

unique colors in the range [L, R].

思路:

将每种颜色看成一条线段,则每次1操作相当于在区间内画了若干条线段,2操作相当于询问指定区间内线段数。

则对于每次询问,统计[1,L)的右端点数和[1-R]的左端点数,后者减前者,即得到答案(具体可画图理解),而每次1操作增加的左端点数为递减等差数列,增加的右操作数为与之倒序的递增等差数列。

参考了HH学长的实现思路,利用这个性质,用分块的思想来维护区间内左右端点数。

在实现上,对于全部询问Q,第一次,我们只更新右端点数,并在询问操作时把指定区间的右端点数减入到对应ans里;第二次,我们只更新左端点数,并在询问操作时把指定区间内左端点数加入到对应ans里。其中第一次完成后,将整个区间左右旋转,并初始化,使得不同但对称的操作,代码能够复用,很巧妙~~具体实现见代码

#include<iostream>
#include<algorithm>
#define de(x) cout<< #x <<" = "<<x<<endl
using namespace std;
typedef long long ll;
const int bsz=350,N=1e5+7,n=1e5+2;
int bn,bl[N],br[N],sz[N];
int qop[N],ql[N],qr[N];
ll ans[N],bs[N],bb[N],bd[N],a[N];
void init(int n)
{
bn=(n-1)/bsz+1;
for (int i=0;i<bn;++i)
{
bl[i]=i*bsz;
br[i]=min(n,(i+1)*bsz);
sz[i]=br[i]-bl[i];
bs[i]=bd[i]=bb[i]=0;
}
for (int i=0;i<n;++i)
a[i]=0;
}
void build(int b)
{
for (int i=bl[b];i<br[b];++i)
a[i]+=bb[b]+(i-bl[b]+1)*bd[b];
bb[b]=bd[b]=0;
}
void update(int b,int l,int r)
{
int nl=max(l,bl[b]),nr=min(br[b],r);
if (nl>=nr)
return;
if (nr-nl==sz[b])
{
bb[b]+=nl-l; //维护这一块的基数
bd[b]++; //维护这一块的公差
bs[b]+=(1+sz[b])*sz[b]/2+(nl-l)*sz[b]; //用求和公式维护这一块端点数
return;
}
for (int i=nl;i<nr;++i) //如果该块没有被包含,则直接暴力维护
{
bs[b]+=i-l+1;
a[i]+=i-l+1;
}
return;
}
ll query(int b,int l,int r)
{
int nl=max(l,bl[b]),nr=min(br[b],r);
if (nl>=nr)
return 0;
if (nr-nl==sz[b]) //被包含直接返回这一块的值
return bs[b];
//没有被包含时
ll res=0;
build(b);//通过之前维护的公差和基数暴力统计端点数
for (int i=nl;i<nr;++i)
res+=a[i];
return res;
}
int main()
{
std::ios::sync_with_stdio(0);
cin.tie(0);
int T;
cin>>T;
while (T--)
{
int q;
cin>>q;
fill_n(ans,q,0);
for (int i=0;i<q;++i)
{
cin>>qop[i]>>ql[i]>>qr[i];
--ql[i];
--qr[i];
}
init(n);
for (int i=0;i<q;++i)
{
if (qop[i]==1)
for (int j=0;j<bn;++j)
update(j,ql[i],qr[i]+1);
else
for (int j=0;j<bn;++j)
ans[i]-=query(j,0,ql[i]);
//旋转
ql[i]=n-1-ql[i];
qr[i]=n-1-qr[i];
swap(ql[i],qr[i]);
}
init(n);
for (int i=0;i<q;++i)
{
if (qop[i]==1)
for (int j=0;j<bn;++j)
update(j,ql[i],qr[i]+1);
else
{
for (int j=0;j<bn;++j)
ans[i]+=query(j,ql[i],n);
cout<<ans[i]<<endl;
}
}
}
return 0;
}

Tishreen-CPC 2018 G. Colors Overflow(分块)的更多相关文章

  1. 2018北京网络赛 G The Mole /// 分块暴力 点线距离

    题目大意: 给定n段线段 编号为1~n 接下来m个询问 给定一点 输出离该点最近的线段的最小编号(距离相等时取编号小的) 题解 大致就是 1.坐标范围为(0,2^16-1) 将坐标系划分为2^8*2^ ...

  2. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  3. 【UOJ#435】【集训队作业2018】Simple Tree 分块+树链剖分

    题目大意: 有一棵有根树,根为 1 ,点有点权.现在有 m 次操作,操作有 3 种:1 x y w ,将 x 到 y 的路径上的点点权加上 w (其中 w=±1w=±1 ):2 x y ,询问在 x ...

  4. [Avito Code Challenge 2018 G] Magic multisets(线段树)

    题目链接:http://codeforces.com/contest/981/problem/G 题目大意: 有n个初始为空的‘魔法’可重集,向一个‘可重集’加入元素时,若该元素未出现过,则将其加入: ...

  5. Asia Yokohama Regional Contest 2018 G题 What Goes Up Must Come Down

    链接 G题 https://codeforces.com/gym/102082 使其成为单峰序列需要交换多少次相邻的数. 树状数组维护逆序对. 对于每个序列中的数,要么在单峰的左侧,要么在单峰的右侧, ...

  6. 2018 Arab Collegiate Programming Contest (ACPC 2018) G. Greatest Chicken Dish (线段树+GCD)

    题目链接:https://codeforces.com/gym/101991/problem/G 题意:给出 n 个数,q 次询问区间[ li,ri ]之间有多少个 GCD = di 的连续子区间. ...

  7. #6499. 「雅礼集训 2018 Day2」颜色 [分块,倍增,bitset]

    bitset压位,因为是颜色数,直接倍增,重合部分不管,没了. // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #d ...

  8. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  9. kindeditor之video插件开发

    KindEditor是一套开源的HTML可视化编辑器,主要用于让用户在网站上获得所见即所得编辑效果.不仅结构小巧,而且功能强大,最主要的是它采用插件的开发管理方式,能很容易再它的基础上添加插件来实现自 ...

随机推荐

  1. redis 学习(20)-- 常见的持久化开发与运维问题

    常见的持久化开发与运维问题 fork 操作 fork 操作是一个同步操作,若执行较慢会阻塞 redis 主线程 执行时间与内存量相关:内存越大,耗时越长:虚拟机较慢,真机较快 查看 fork 执行时间 ...

  2. 怎样使用 vue-cli ( Vue 脚手架 )

    vue-cli 是 Vue 官方出品的快速构建单页应用的脚手架, 相当于 React 官方出品的 create-react-app , 下面演示 vue-cli 的 最 基本用法: 1. 全局安装 v ...

  3. c#连接Java后台,处理返回的数据

    首先定义共通文件,根据url连接Java后台 class ConntectUtil { public JObject ConsoleApplication(string appID, CustomDa ...

  4. vbs 简单文件操作

    Dim fso, MyFile, fldSet fso = CreateObject("Scripting.FileSystemObject")Set fld = fso.crea ...

  5. BZOJ4241历史研究题解--回滚莫队

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4241 分析 这题就是求区间权值乘以权值出现次数的最大值,一看莫队法块可搞,但仔细想想,莫 ...

  6. HTML5之fileReader异步读取文件及文件切片读取

    fileReader的方法与事件 fileReade实现图片预加载 fileReade实现文件读取进度条 fileReade的与file.s实现文件切片读取 一.fileReader的方法与事件 1. ...

  7. 5.Hibernate 核心开发接口

    一.Configuration(AnnotationConfiguration) 作用:进行配置信息的管理 目标:用来产生SessionFactory 可以在configure 方法中指定hibern ...

  8. git tag 重写

    有的时候我们想要在git的master分支中插入一个tag,这个时候就需要我们先删除一个不重要的tag,然后切到我们想要提交内容的地方,重新打tag. 例如:在master分支上修改提交,在commi ...

  9. 用cubase制作消音伴奏

  10. 牛客小白月赛12 D 月月给华华出题 (欧拉函数,数论,线筛)

    链接:https://ac.nowcoder.com/acm/contest/392/D 来源:牛客网 月月给华华出题 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 131072K, ...