题面

解析

首先,因为是不同的数字,

可以从小到大依次枚举加上每一个数字的贡献,再枚举每个数.

然而这样会T掉...

考虑到\(n\)只有\(50000\),

当分成的数最多时,设最大的数为\(m\),

则\(1+2+3...+m<=n\),

所以最多只会分成315个数(\(m<316\)).

那么设\(f[j][i]\)表示把\(j\)分成\(i\)个数的方案数.

依次枚举加上的数\(i\),

那么这个\(i\)要么作为单独的一块加上去,

要么就分成\(i\)块给之前的贡献过的每个数加1.

所以转移方程:\(f[j][i]-f[j-i][i-1]+f[j-i][i]\).

最后\(ans=\sum_{i=1}^{315}f[n][i]\).

code(可能代码里面有一些时候大于了315别在意):

#include <iostream>
#include <cstdio>
#include <cstring>
#define filein(a) freopen(a".cpp","r",stdin)
#define fileout(a) freopen(a".cpp","w",stdout);
using namespace std; inline int read(){
int sum=0,f=1;char c=getchar();
while((c<'0'||c>'9')&&c!=EOF){if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9'&&c!=EOF){sum=sum*10+c-'0';c=getchar();}
return sum*f;
} const int N=50001;
const int Mod=1000000007;
int n,f[N][401]; int main(){
n=read();f[1][1]=1;
for(int i=1;i<=320;i++){
for(int j=i+1;j<=n;j++) f[j][i]=(f[j-i][i]+f[j-i][i-1])%Mod;
}
int ans=0;
for(int i=1;i<=320;i++) ans=(ans+f[n][i])%Mod;
printf("%d\n",ans);
return 0;
}

题解 [51nod1201] 整数划分的更多相关文章

  1. 【题解】整数划分 [51nod1201] 整数划分 V2 [51nod1259]

    [题解]整数划分 [51nod1201] 整数划分 V2 [51nod1259] 传送门:整数划分 \([51nod1201]\) 整数划分 \(V2\) \([51nod1259]\)** [题目描 ...

  2. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  3. BZOJ1263: [SCOI2006]整数划分

    1263: [SCOI2006]整数划分 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 332[Submit][Status] ...

  4. NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)

    题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...

  5. 【NOI2019模拟2019.6.27】B (生成函数+整数划分dp|多项式exp)

    Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难 ...

  6. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  7. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  8. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  9. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

随机推荐

  1. 在vue项目中,将juery设置为全局变量

    1.首先执行:npm install  jQuery --save-dev,在package.json里加入jQuery. 2.修改build下的webpack.base.conf.js 方法一: 首 ...

  2. 关于keepalived执行后日志狂刷IPVS: Can't initialize ipvs: Protocol not available的问题

    安装了keepalived+lvs,达到了高可用的负载均衡,但是今天再启用的时候发现keepalived不正常,通过 /var/log/messages 查看系统日志发现狂刷 IPVS: Can't ...

  3. docker login Harbor时报错403 Forbidden

    背景 在本地搭建了harbor后,在进行了相关配置后,还是报错:Error response from daemon: login attempt to http://10.xx.xx.xx:8000 ...

  4. - RabbitMQ - 0 - 介绍、linux 和windows安装

    目录 一. 介绍 二.windows安装erlang和rabbitMQ 三.Linux安装erlang和RabbitMQ 一. 介绍 rabbitMQ 是基于 erlang 语言开发的, 为了使用 r ...

  5. ubuntu中安装字体雅黑和consolas

    Ubuntu的群体里偏向使用雅黑,我目前用的YaHei.Consolas 1.11 版本 (雅黑-Consolas的混合体) http://www.netmako.com/RobertLee/YaHe ...

  6. JS基础_函数的参数

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. javaIO——BufferedReader效率测试实践

    上一篇刚刚学习了 BufferedReader ,想着来验证一下 BufferedReader 的缓冲到底能带来多大的性能提升,于是拷贝了一个100M 左右的日志文件放到本地,测试一下使用 Buffe ...

  8. 使用 function 构造函数创建组件和使用 class 关键字创建组件

    使用 function 构造函数创建组件: 如果想要把组件放到页面中,可以把构造函数的名称,当作 组件的名称,以 HTML标签形式引入页面中, 因为在React中,构造函数就是一个最基本的组件. 注意 ...

  9. C++ STL 之 string

    #include <iostream> #include <string> using namespace std; // 初始化 void test01() { string ...

  10. DICOM文件修改方法

    /// <summary> /// 读取dicom文件 /// </summary> /// <param name="srcdirectory"&g ...