题面

解析

首先,因为是不同的数字,

可以从小到大依次枚举加上每一个数字的贡献,再枚举每个数.

然而这样会T掉...

考虑到\(n\)只有\(50000\),

当分成的数最多时,设最大的数为\(m\),

则\(1+2+3...+m<=n\),

所以最多只会分成315个数(\(m<316\)).

那么设\(f[j][i]\)表示把\(j\)分成\(i\)个数的方案数.

依次枚举加上的数\(i\),

那么这个\(i\)要么作为单独的一块加上去,

要么就分成\(i\)块给之前的贡献过的每个数加1.

所以转移方程:\(f[j][i]-f[j-i][i-1]+f[j-i][i]\).

最后\(ans=\sum_{i=1}^{315}f[n][i]\).

code(可能代码里面有一些时候大于了315别在意):

#include <iostream>
#include <cstdio>
#include <cstring>
#define filein(a) freopen(a".cpp","r",stdin)
#define fileout(a) freopen(a".cpp","w",stdout);
using namespace std; inline int read(){
int sum=0,f=1;char c=getchar();
while((c<'0'||c>'9')&&c!=EOF){if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9'&&c!=EOF){sum=sum*10+c-'0';c=getchar();}
return sum*f;
} const int N=50001;
const int Mod=1000000007;
int n,f[N][401]; int main(){
n=read();f[1][1]=1;
for(int i=1;i<=320;i++){
for(int j=i+1;j<=n;j++) f[j][i]=(f[j-i][i]+f[j-i][i-1])%Mod;
}
int ans=0;
for(int i=1;i<=320;i++) ans=(ans+f[n][i])%Mod;
printf("%d\n",ans);
return 0;
}

题解 [51nod1201] 整数划分的更多相关文章

  1. 【题解】整数划分 [51nod1201] 整数划分 V2 [51nod1259]

    [题解]整数划分 [51nod1201] 整数划分 V2 [51nod1259] 传送门:整数划分 \([51nod1201]\) 整数划分 \(V2\) \([51nod1259]\)** [题目描 ...

  2. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  3. BZOJ1263: [SCOI2006]整数划分

    1263: [SCOI2006]整数划分 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 332[Submit][Status] ...

  4. NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)

    题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...

  5. 【NOI2019模拟2019.6.27】B (生成函数+整数划分dp|多项式exp)

    Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难 ...

  6. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  7. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  8. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  9. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

随机推荐

  1. SQL SERVER CONVERT函数

    定义: CONVERT函数返回 转换了数据类型的数据. 语法: CONVERT(target_type,expression,date_style smallint) 参数: ①target_type ...

  2. python搞搞大数据之hbase——初探

    使用python链接mysql读入一个表并把它再写到hbase 里去(九头蛇万岁) 先声明一下需要用的库: 俩!!: happybase    (写这个的老哥真的happy) pymysql 建议使用 ...

  3. Win7 Eclipse 搭建spark java1.8编译环境,JavaRDD的helloworld例子

    [学习笔记] Win7 Eclipse 搭建spark java1.8编译环境,JavaRDD的helloworld例子: 在eclipse oxygen上创建一个普通的java项目,然后把spark ...

  4. springboot+JPA 整合redis

    1.导入redis依赖: <dependency> <groupId>org.springframework.boot</groupId> <artifact ...

  5. N分成不同的数相乘使答案最大

    题意:http://acm.hdu.edu.cn/showproblem.php?pid=5976 首先队友想出了分的越多答案越多. 我们就:2,3,4,5,6...多出来的尽量往小了加就行了. #d ...

  6. Qt的多线程总结以及使用(一)

    Qt提供QThread类以进行多任务的处理.Qt提供的线程可以做到单个进程做不到的事情.在这里实现最简单的一个多线程.最简单的线程的基类为QThread,然后需要重写QThread的run(),在ru ...

  7. bootstrap-table的简单使用

    先上效果图: 第一步:引用bootstrap-table的样式和js. @Styles.Render("~/assets/css/bootstrap.css") @Styles.R ...

  8. JavaScript获取数组索引

    JavaScript获取数组索引: <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...

  9. Oracle数据库(实例)删除用户和表空间

    删除用户drop user IMPLOCAL cascade; 删除表空间drop tablespace IMPLOCAL including contents and datafiles casca ...

  10. python小知识-sys.argv

    sys.argv 就是一个从程序外部获取参数的桥梁 1.t1.py import sys a = sys.argv b = len(sys.argv) print(a) print(b) 在pytho ...