麦克斯韦方程组 (Maxwell's equation)的简单解释
【转载请注明出处】http://www.cnblogs.com/mashiqi
2016/12/12
以下会用高中的物理知识和大学微积分的数学知识对麦克斯韦方程组进行一个简单的解释。希望大家都能看得懂Maxwell's equations大概说了什么。至少了解个大概吧。
1、高斯定律 (Gauss’s law):电场
电荷(electic charges)产生静电场(static electric field)。静电场线始于正电荷,指向负电荷。任意区域内的电荷总量正比于相应的电场在此区域表面的第二型面积分。用公式表示就是$$\int_{\Omega} \frac{\rho}{\epsilon_0}dx = \int_{\partial \Omega} \mathbf{E} \cdot d\vec{S},$$其中$\epsilon_0$这个比例系数称为“真空介电常数(vacuum permittivity, dielectricity of free space)”。将等式右边用散度公式表示后,就得到$$\int_{\Omega} \frac{\rho}{\epsilon_0}dx = \int_{\Omega} \nabla \cdot \mathbf{E} ~dx.$$由于$\Omega$的任意性,我们得到$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}.$$
2、高斯定律 (Gauss’s law):磁场
没有所谓的“磁荷”。磁场线都是闭合的。也就是说,不存在这么一个点,使得磁场线从这里想四周射出。用公式表示就是$$\int_{\Omega} \nabla \cdot \mathbf{B} ~dx = 0.$$由于$\Omega$的任意性,我们得到$$\nabla \cdot \mathbf{B} = 0.$$
3、法拉第电磁感应定律(Faraday's law of induction)
变化的磁场产生电场。且在点$p$处变化的磁场在点$p$处所产生的电场是“旋转着的”,对应的电场线是闭合的。也就是说沿着一条闭合的电场线走一圈,初末电压会不一样(我们知道,对于静电场,沿着任何一条闭合的线路走一圈,除末电压是一样的)。用数学的语言来描述就是说$\mathbf{E}$的旋度不为零。并且法拉第电磁感应定律进一步指出:磁场$\mathbf{B}$的变化率与所产生的$\mathbf{E}$的旋度成正比。用公式表示如下$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$
4、安培定律 (Ampere’s law)
电流和变化的电场都产生磁场。把这个定律用数学公式表示出来,就是:$$\nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right).$$
5、亥姆霍兹分解 (Helmholtz decomposition)
矢量场可以分解为无旋度和无散度两个部分。设$\mathbf{F}$为一个区域$V \subseteq \mathbb{R}^3$内的二阶连续可微矢量场,则存在一个标量场$\Phi$(称为标量势)与矢量场$\mathbf{A}$(称为矢量势),使得$$\mathbf{F} = -\nabla\Phi + \nabla \times \mathbf{A}.$$显然,$\nabla\Phi$就是无旋度部分,$\nabla \times \mathbf{A}$就是无散度部分.
将亥姆霍兹分解应用到麦克斯韦方程组,则可以得到一个标量势$\Phi$与矢量势$\mathbf{A}$,使得$$\mathbf{E} = -\nabla\Phi - \frac{\partial \mathbf{A}}{\partial t},$$ $$\mathbf{B} = \nabla \times \mathbf{A}.$$我们将$\Phi$称为电磁场的电势(electric potential),将$\mathbf{A}$称为磁向量势(magnetic vector potential)。
麦克斯韦方程组 (Maxwell's equation)的简单解释的更多相关文章
- 如何简单解释 MapReduce算法
原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...
- static_cast 、const_cast、dynamic_cast、reinterpret_cast 关键字简单解释
static_cast .const_cast.dynamic_cast.reinterpret_cast 关键字简单解释: Static_cast 静态类型转换 ①用于类层次结构中基类(父类)和派生 ...
- 单个body|简单解释|复杂解释|反面解释
单个body有三种方法简单解释.复杂解释和反面解释 ========================================================================== ...
- ssh架构简单解释和vo po解释
Struts.spring.Hibernate在各层的作用 1)struts 负责 web层. ActionFormBean 接收网页中表单提交的数据,然后通过Action 进行处理,再Forwa ...
- GMM简单解释
1.GMM(guassian mixture model) 混合高斯模型,顾名思义,就是用多个带有权重的高斯密度函数来描述数据的分布情况.理论上来说,高斯分量越多,极值点越多,混合高斯密度函数可以逼近 ...
- TCP/IP模型的简单解释
TCP/IP模型是互联网的基础.想要理解互联网,就必须理解这个模型.但是,它不好懂,我就从来没有搞懂过. 前几天,BetterExplained上有一篇文章,很通俗地解释了这个模型.我读后有一种恍然大 ...
- 关于TCP的握手与挥手-----简单解释
所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立.在socket编程中,这一过程由客户端执行conn ...
- python sys.argv[]简单解释
上一篇UDP编程中简单使用了一些sys模块的argv参数,也是我第一次看见这个参数,这里做个记录: sys.argv是一个从程序外部获取参数的桥梁,这个“外部”很关键, 因为我们从外部取得的参数可以是 ...
- python 元类的简单解释
本文转自博客:http://www.cnblogs.com/piperck/p/5840443.html 作者:piperck python 类和元类(metaclass)的理解和简单运用 (一) p ...
随机推荐
- Angular js 之一些简单的js操作
1.<div ng-if()> </div> 括号里面是布尔值 如果是false那么你ng-if的那个dom就会不显示.(感觉这是angular js中最给力的一点) 一般会 ...
- IOS --- OC与Swift混编
swift 语言出来后,可能新的项目直接使用swift来开发,但可能在过程中会遇到一些情况,某些已用OC写好的类或封装好的模块,不想再在swift 中再写一次,哪就使用混编.这个在IOS8中是允许的. ...
- C语言经典例题100
C语言经典例题100 来源 http://www.fishc.com 适合初学者 ----------------------------------------------------------- ...
- SQL Server数据库性能优化之SQL语句篇【转】
SQL Server数据库性能优化之SQL语句篇http://www.blogjava.net/allen-zhe/archive/2010/07/23/326927.html 近期项目需要, 做了一 ...
- 在集群上运行caffe程序时如何避免Out of Memory
不少同学抱怨,在集群的GPU节点上运行caffe程序时,经常出现"Out of Memory"的情况.实际上,如果我们在提交caffe程序到某个GPU节点的同时,指定该节点某个比较 ...
- ArcEngine 栅格数据
1.ArcEngine中的栅格数据组织方式(详细信息见:http://resources.arcgis.com/zh-cn/help/main/10.1/index.html#/na/009t0000 ...
- 用Mockito mock普通的方法
上面的例子是很理想化的状态,但是在实际的开发中,我们需要经常调用一些依赖特定环境的函数或者调用同事写的代码,而同事仅提供了接口.这个时候就需要利用Mockito来协助我们完成测试. 当然,你可以选择e ...
- 构造函数,const char*与c_str
/******************************************************************************* * 版权所有: * 模 块 名: * ...
- javaSE学习路线
Java SE大致可分为以下几块内容: n 对象导论:如何用面向对象的思路来开发 n 深入JVM:Java运行机制以及JVM原理 n 面向对象的特征:封装.继承.抽象.多态 n 数组和容器:容 ...
- aspx在页面跳转(Response.Redirect)时丢失session问题及解决办法
[问题描述] 假设a.aspx.cs页面保存有Session["empid"]="3",当a.aspx.cs通过Response.Redirect(" ...