【转载请注明出处】http://www.cnblogs.com/mashiqi

2016/12/12

以下会用高中的物理知识和大学微积分的数学知识对麦克斯韦方程组进行一个简单的解释。希望大家都能看得懂Maxwell's equations大概说了什么。至少了解个大概吧。

1、高斯定律 (Gauss’s law):电场

电荷(electic charges)产生静电场(static electric field)。静电场线始于正电荷,指向负电荷。任意区域内的电荷总量正比于相应的电场在此区域表面的第二型面积分。用公式表示就是$$\int_{\Omega} \frac{\rho}{\epsilon_0}dx = \int_{\partial \Omega} \mathbf{E} \cdot d\vec{S},$$其中$\epsilon_0$这个比例系数称为“真空介电常数(vacuum  permittivity, dielectricity of free space)”。将等式右边用散度公式表示后,就得到$$\int_{\Omega} \frac{\rho}{\epsilon_0}dx = \int_{\Omega} \nabla \cdot \mathbf{E} ~dx.$$由于$\Omega$的任意性,我们得到$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}.$$

2、高斯定律 (Gauss’s law):磁场

没有所谓的磁荷磁场线都是闭合的。也就是说,不存在这么一个点,使得磁场线从这里想四周射出。用公式表示就是$$\int_{\Omega} \nabla \cdot \mathbf{B} ~dx = 0.$$由于$\Omega$的任意性,我们得到$$\nabla \cdot \mathbf{B} = 0.$$

3、法拉第电磁感应定律(Faraday's law of induction)

变化的磁场产生电场。且在点$p$处变化的磁场在点$p$处所产生的电场是“旋转着的”,对应的电场线是闭合的。也就是说沿着一条闭合的电场线走一圈,初末电压会不一样(我们知道,对于静电场,沿着任何一条闭合的线路走一圈,除末电压是一样的)。用数学的语言来描述就是说$\mathbf{E}$的旋度不为零。并且法拉第电磁感应定律进一步指出:磁场$\mathbf{B}$的变化率与所产生的$\mathbf{E}$的旋度成正比。用公式表示如下$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$

4、安培定律 (Ampere’s law)

电流和变化的电场都产生磁场。把这个定律用数学公式表示出来,就是:$$\nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right).$$

5、亥姆霍兹分解 (Helmholtz decomposition)

矢量场可以分解为无旋度和无散度两个部分。设$\mathbf{F}$为一个区域$V \subseteq \mathbb{R}^3$内的二阶连续可微矢量场,则存在一个标量场$\Phi$(称为标量势)与矢量场$\mathbf{A}$(称为矢量势),使得$$\mathbf{F} = -\nabla\Phi + \nabla \times \mathbf{A}.$$显然,$\nabla\Phi$就是无旋度部分,$\nabla \times \mathbf{A}$就是无散度部分.

将亥姆霍兹分解应用到麦克斯韦方程组,则可以得到一个标量势$\Phi$与矢量势$\mathbf{A}$,使得$$\mathbf{E} = -\nabla\Phi - \frac{\partial \mathbf{A}}{\partial t},$$ $$\mathbf{B} = \nabla \times \mathbf{A}.$$我们将$\Phi$称为电磁场的电势(electric potential),将$\mathbf{A}$称为磁向量势(magnetic vector potential)。

麦克斯韦方程组 (Maxwell's equation)的简单解释的更多相关文章

  1. 如何简单解释 MapReduce算法

    原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...

  2. static_cast 、const_cast、dynamic_cast、reinterpret_cast 关键字简单解释

    static_cast .const_cast.dynamic_cast.reinterpret_cast 关键字简单解释: Static_cast 静态类型转换 ①用于类层次结构中基类(父类)和派生 ...

  3. 单个body|简单解释|复杂解释|反面解释

    单个body有三种方法简单解释.复杂解释和反面解释 ========================================================================== ...

  4. ssh架构简单解释和vo po解释

      Struts.spring.Hibernate在各层的作用 1)struts 负责 web层. ActionFormBean 接收网页中表单提交的数据,然后通过Action 进行处理,再Forwa ...

  5. GMM简单解释

    1.GMM(guassian mixture model) 混合高斯模型,顾名思义,就是用多个带有权重的高斯密度函数来描述数据的分布情况.理论上来说,高斯分量越多,极值点越多,混合高斯密度函数可以逼近 ...

  6. TCP/IP模型的简单解释

    TCP/IP模型是互联网的基础.想要理解互联网,就必须理解这个模型.但是,它不好懂,我就从来没有搞懂过. 前几天,BetterExplained上有一篇文章,很通俗地解释了这个模型.我读后有一种恍然大 ...

  7. 关于TCP的握手与挥手-----简单解释

    所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立.在socket编程中,这一过程由客户端执行conn ...

  8. python sys.argv[]简单解释

    上一篇UDP编程中简单使用了一些sys模块的argv参数,也是我第一次看见这个参数,这里做个记录: sys.argv是一个从程序外部获取参数的桥梁,这个“外部”很关键, 因为我们从外部取得的参数可以是 ...

  9. python 元类的简单解释

    本文转自博客:http://www.cnblogs.com/piperck/p/5840443.html 作者:piperck python 类和元类(metaclass)的理解和简单运用 (一) p ...

随机推荐

  1. [并查集] POJ 1182 食物链

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 66294   Accepted: 19539 Description ...

  2. BZOJ 1189 二分匹配 || 最大流

    1189: [HNOI2007]紧急疏散evacuate Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1155  Solved: 420[Submi ...

  3. 什么是Alpha通道?

    图像处理(Alpha通道,RGB,...)祁连山(Adobe 系列教程)****的UI课程 一个也许很傻的问题,在图像处理中alpha到底是什么?  Alpha通道是计算机图形学中的术语,指的是特别的 ...

  4. anguar.js tutorial demo

    http://docs.angularjs.cn/tutorial angular 入门demo : PhoneCat Tutorial App 别人的DEMO(官方版):http://angular ...

  5. ctags and vim

    1,源码目录下第归检索. ctags -R * 2,搜索tag并用vim打开: vim -t <tag> 3,在vim 下的一些操作: Keyboard command Action Ct ...

  6. 配置指定使用tcc编译器编译nim程序

    1.前言 nim是什么? nim是一门静态编译型语言,语法类似python,nim的代码被翻译成C代码再被C编译器编译成可执行文件.因此nim的可执行文件比较小,性能应该也不错. 最简单的nim程序就 ...

  7. jQuery原生框架中的jQuery.fn.extend和jQuery.extend

    extend 方法在 jQuery 中是一个很重要的方法,jQuey 内部用它来扩展静态方法或实例方法,而且我们开发 jQuery 插件开发的时候也会用到它.但是在内部,是存在 jQuery.fn.e ...

  8. IOS自定义日历控件的简单实现(附思想及过程)

    因为程序要求要插入一个日历控件,该空间的要求是从当天开始及以后的六个月内的日历,上网查资料基本上都说只要获取两个条件(当月第一天周几和本月一共有多少天)就可以实现一个简单的日历,剩下的靠自己的简单逻辑 ...

  9. MySQL中DATETIME、DATE和TIMESTAMP类型的区别

    一.TIMESTAMP 显示格式:YYYY-MM-DD HH:MM:SS 时间范围:[ '1970-01-01 00:00:00'到'2037-12-31 23:59:59'] TIMESTAMP D ...

  10. Android 数据库管理— — —升级数据库

    package com.example.databasetest; import android.content.Context;import android.database.sqlite.SQLi ...