邻接矩阵有向图(一)之 C语言详解
本章介绍邻接矩阵有向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!
目录
1. 邻接矩阵有向图的介绍
2. 邻接矩阵有向图的代码说明
3. 邻接矩阵有向图的完整源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
邻接矩阵有向图的介绍
邻接矩阵有向图是指通过邻接矩阵表示的有向图。

上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。
上图右边的矩阵是G2在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点到第j个顶点是一条边,A[i][j]=0则表示不是一条边;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)到第2个顶点(C)是一条边。
邻接矩阵有向图的代码说明
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
2. 创建矩阵
这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据。
2.1 创建图(用已提供的矩阵)
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'B'},
{'B', 'C'},
{'B', 'E'},
{'B', 'F'},
{'C', 'E'},
{'D', 'C'},
{'E', 'B'},
{'E', 'D'},
{'F', 'G'}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
pG->vexs[i] = vexs[i];
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = get_position(*pG, edges[i][0]);
p2 = get_position(*pG, edges[i][1]);
pG->matrix[p1][p2] = 1;
}
return pG;
}
createexamplegraph()是的作用是创建一个邻接矩阵有向图。实际上,该方法创建的有向图,就是上面的图G2。
2.2 创建图(自己输入)
/*
* 创建图(自己输入)
*/
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
pG->matrix[p1][p2] = 1;
}
return pG;
}
create_graph()是读取用户的输入,将输入的数据转换成对应的有向图。
邻接矩阵有向图的完整源码
点击查看:源代码
邻接矩阵有向图(一)之 C语言详解的更多相关文章
- 邻接表有向图(一)之 C语言详解
本章介绍邻接表有向图.在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了.和以往一样,本文会先给出C语言的实现:后续再分别给出C++和Java版本的实现 ...
- 邻接矩阵无向图(一)之 C语言详解
本章介绍邻接矩阵无向图.在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了.和以往一样,本文会先给出C语言的实现:后续再分别给出C++和Java版本的实 ...
- 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)
一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...
- Java Web----EL(表达式语言)详解
Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...
- Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- Prim算法(一)之 C语言详解
本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...
- Kruskal算法(一)之 C语言详解
本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...
- 拓扑排序(一)之 C语言详解
本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...
随机推荐
- 编译系统中BNF: Backus-Naur Form
巴科斯范式(BNF: Backus-Naur Form 的缩写)是由 John Backus 和 Peter Naur 首次引入一种形式化符号来描述给定语言的语法. 简称为:BNF符号. 现在,几乎每 ...
- 【转】【Linux】 临界区,互斥量,信号量,事件的区别
原文地址:http://blog.itpub.net/10697500/viewspace-612045/ Linux中 四种进程或线程同步互斥的控制方法1.临界区:通过对多线程的串行化来访问公共资源 ...
- vsftp搭建+虚拟用户
yum安装vsfpd: [root@localhost ~]# yum -y install vsftpd db4-utils Loaded plugins: fastestmirror, refre ...
- Java解析网段下包含的所有IP地址
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;impor ...
- Ubuntu之root权限的获取
方案一: Ubuntu的root密码在没有设置之前是随机的,即在每一次开机的时候他的密码都不同,但是由于在安装Ubuntu的时候需要建立一个账户,而这个招呼又属于admin组,因此它可以对root进行 ...
- IEnumerable<IEnumerable<string>>结构解析通用解决方案(支持指定属性顺序)
一.前言 类似如下字符串 "ID", "NameValue", "CodeValue", "ExchangeTypeValue&q ...
- [Asp.net 开发系列之SignalR篇]专题四:使用SignalR实现发送图片
一.引言 在前一篇博文已经介绍了如何使用SignalR来实现聊天室的功能,在这篇文章中,将实现如何使用SignalR来实现发送图片的功能. 二.实现发送图片的思路 我还是按照之前的方式来讲述这篇文章, ...
- Spring AOP简述
使用面想对象(Object-Oriented Programming,OOP)包含一些弊端,当需要为多个不具有继承关系的对象引入公共行为时,例如日志,安全检测等.我们只有在每个对象中引入公共行为,这样 ...
- C#反射基础知识和实战应用
首先来说一下什么是反射? 反射提供了封装程序集.模块和类型的对象(Type类型) 可以使用反射动态的创建类型的实例,将类型绑定到现有对象,或从现有对象中获取类型,然后,可以调用类型的方法或访问其字段和 ...
- SSTable 介绍(二)
作者:Jack47 上一篇SSTable 介绍(一)介绍了SSTable的适用场景和leveldb中SSTable的设计.本篇介绍SSTable文件的结构组成. SSTable的特点 首先明确一下上文 ...