【BZOJ2208】[JSOI2010]连通数(Tarjan)

题面

BZOJ

洛谷

题解

先吐槽辣鸡洛谷数据,我写了个\(O(nm)\)的都过了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 2020
struct Line{int v,next;}e[MAX*MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int vis[MAX],ans,dep,n;char g[MAX];
void dfs(int u)
{
if(vis[u]==dep)return;
vis[u]=dep;++ans;
for(int i=h[u];i;i=e[i].next)dfs(e[i].v);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%s",g+1);
for(int j=1;j<=n;++j)
if(g[j]=='1')Add(i,j);
}
for(int i=1;i<=n;++i)dep=i,dfs(i);
printf("%d\n",ans);
}

正经点。

这玩意既然是有向图,直接给他缩了就变\(DAG\)了,似乎直接\(dp\)一下就好了?

然而直接\(dp\)没法维护哪些点走过了,所以咱来\(bitset\)一下就好了?

#include<iostream>
#include<cstdio>
#include<vector>
#include<bitset>
#include<queue>
using namespace std;
#define MAX 2020
struct Line{int v,next;}e[MAX*MAX];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n;char g[MAX];
bool ins[MAX];
int dfn[MAX],low[MAX],St[MAX],top,gr,G[MAX],tim,sz[MAX];
bitset<2020> s[MAX];
vector<int> E[MAX];
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;ins[u]=true;St[++top]=u;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int v;++gr;
do{v=St[top--];ins[v]=false;G[v]=gr;s[gr].set(v);++sz[gr];}while(u!=v);
}
}
int p[MAX],tot,ans;
void Topsort()
{
queue<int> Q;
for(int i=1;i<=gr;++i)if(!dg[i])Q.push(i);
while(!Q.empty())
{
int u=Q.front();p[++tot]=u;Q.pop();
for(int i=0,l=E[u].size();i<l;++i)
if(!--dg[E[u][i]])Q.push(E[u][i]);
}
for(int i=tot;i;--i)
for(int j=0,l=E[p[i]].size();j<l;++j)
s[p[i]]|=s[E[p[i]][j]];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%s",g+1);
for(int j=1;j<=n;++j)
if(g[j]=='1')Add(i,j);
}
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int u=1;u<=n;++u)
for(int i=h[u];i;i=e[i].next)
if(G[u]!=G[e[i].v])
E[G[u]].push_back(G[e[i].v]),++dg[G[e[i].v]];
Topsort();
for(int i=1;i<=gr;++i)ans+=s[i].count()*sz[i];
printf("%d\n",ans);
}

【BZOJ2208】[JSOI2010]连通数(Tarjan)的更多相关文章

  1. BZOJ2208: [Jsoi2010]连通数(tarjan bitset floyd)

    题意 题目链接 Sol 数据水的一批,\(O(n^3)\)暴力可过 实际上只要bitset优化一下floyd复杂度就是对的了(\(O(\frac{n^3}{32})\)) 还可以缩点之后bitset维 ...

  2. [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd

    连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...

  3. BZOJ 2208: [Jsoi2010]连通数 tarjan bitset

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. bzoj2208 [Jsoi2010]连通数(scc+bitset)

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1879  Solved: 778[Submit][Status ...

  5. [BZOJ2208][Jsoi2010]连通数 暴力枚举

    Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...

  6. [BZOJ2208]:[Jsoi2010]连通数(暴力 or bitset or 塔尖?)

    题目传送门 题目描述 度量一个有向图连通情况的一个指标是连通数,指图中可达顶点对的个数. 在上图中,顶点1可以到达1.2.3.4.5. 顶点2可以到达2.3.4.5. 顶点3可以到达3.4.5. 顶点 ...

  7. BZOJ2208:[JSOI2010]连通数(DFS)

    Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...

  8. BZOJ2208 [Jsoi2010]连通数 【图的遍历】

    题目 输入格式 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. 输出格式 输出一行一个整数,表示该图的连通数. 输入样例 3 ...

  9. BZOJ 2208 JSOI2010 连通数 Tarjan+拓扑排序

    题目大意:给定一个n个点的有向图,求有多少点对(x,y),使x沿边可到达y 设f[i][j]为从i到j是否可达 首先强联通分量中的随意两个点均可达 于是我们利用Tarjan缩点 缩点之后是一个拓扑图. ...

  10. BZOJ2208 [Jsoi2010]连通数[缩点/Floyd传递闭包+bitset优化]

    显然并不能直接dfs,因为$m$会非常大,复杂度就是$O(mn)$: 这题有三种做法,都用到了bitset的优化.第二种算是一个意外的收获,之前没想到竟然还有这种神仙操作.. 方法一:缩点+DAG上b ...

随机推荐

  1. Rabbitmq-direct演示

    在上一节中我们创建了一个日志系统.实现将日志消息广播给所有的cusumer. 在这片教程中,我们将为日志系统添加一个功能:仅仅订阅一部分消息.比如:我们可以直接将关键的错误类型日志消息保存到日志文件中 ...

  2. 【转】单KEY业务,数据库水平切分架构实践

    本文将以“用户中心”为例,介绍“单KEY”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践: 如何来实施水平切分 水平切分后常见的问题 典型问题的优化思路及实践 一.用户 ...

  3. Luogu P3953 逛公园

    不管怎么说,这都是一道十分神仙的NOIp题 你可以说它狗,但不可以否认它就是NOIp的难度 首先这道题很显然是道图论题还是一道图论三合一(最短路+拓扑+图上DP) 先考虑最短路,我们分别以\(1\)和 ...

  4. Salesforce随笔: 将Visualforce Page导出为 Excel/CSV/txt (Display a page in Excel)

    想要实现如题所述功能,可以参照 : Visualforce Developer Guide 第57页中所举的例子,在<apex:page>标签中添加contentType属性. <a ...

  5. 阿里云Https通配符证书购买

    先付款,再绑定证书. 会款后会审核,等待... DNS解析配置错误 按域名授权配置,增加一条 DNS Txt记录值.

  6. 在Java中执行Tomcat中startup.bat

    问题:更改数据库时,需要重启Tomcat服务器,才能把更改后的数据加载到项目中.于是想每次更改数据库时,都调用Java方法,重启Tomcat 代码: Process process = Runtime ...

  7. 软件工程(四)数据流图DFD

    结构化分析中,常用到数据模型为实体关系图,功能模型是数据流图 DFD 可以认为,一个基于计算机的信息处理系统由数据流和一系列的转换构成,这些转换将输入数据流变换为输出数据流.数据流图就是用来刻画数据流 ...

  8. Installing and removing VNC Connect | Red Hat | VNC Connect

    https://www.realvnc.com/en/connect/docs/redhat-install-remove.html 此软件会和TigerVNC(Server)或者X11VNC Ser ...

  9. HTML 5 Canvas vs. SVG

    pick up from http://www.w3school.com.cn/html5/html_5_canvas_vs_svg.asp Canvas 与 SVG 的比较 下表列出了 canvas ...

  10. IE下JS保存图片

    function ieSave()                   {                       var img = document.images[0];            ...