题意:N*M的矩阵,矩阵中有一些坏格子,要在好格子里铺2*3或3*2的地砖,问最多能铺多少个。

我的方法好像和网上流传的方法不太一样...不管了....

由数据范围很容易想到状压dp

我们设某个状态的某一位表示这个格是某种地砖的左上角

那么就会有三种状态,理论上应该用三进制来存储,但我哪会三进制用位运算很方便于是就用2位二进制数来代替1位三进制数...

用00代表没有地砖,01代表铺了个2*3的地砖,10代表铺了个3*2的地砖

然后为了节约空间和时间,先对一个空行dfs一遍,得到这一行可能的地砖铺法,存储下来方便以后枚举状态(M=10时总共有274种状态)

然后设f[i][j][k]为第i行,状态为j,上一行状态为k的地砖数量

然后f[i][j][k]=max{f[i-1][k][l]},枚举k,l,然后判断符合不符合条件即可

为了防止爆内存可以用unsigned char强行卡用滚动数组(我第一次还真是用unsigned char强行卡过的..因为总共数量最多也就10*150/6=250种)

说着轻巧但是好难判啊

然后我不小心输出答案时用了%lld结果一直WA???求解答...

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#define inf 0x3f3f3f3f
#define LL long long int
using namespace std;
const int maxm=,maxn=,maxs=;
const int f11=,f01=;
const int b0101=,b101010=,b11=,b1111=,b111111=; inline LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int sta[maxs],fsta[maxs],sct,mp[maxn];
int f[][maxs][maxs];
int N,M,K;char num[maxs]; inline void print(int x,int y){
if(y<=M*-) print(x>>,y+);
printf("%d",x&);
} void dfs(int x,int s,int fs,int c){
if(x>=M){sta[++sct]=s;fsta[sct]=fs;num[sct]=c;return;}
dfs(x+,s,fs,c);
if(x<=M-){
dfs(x+,s|(b0101<<(x<<)),fs|(b1111<<(x<<)),c+);
}if(x<=M-){
dfs(x+,s|(b101010<<(x<<)),fs|(b111111<<(x<<)),c+);
}
} inline bool judge1(int i,int s){
return (s&(mp[i]|mp[i+]))||(s&f01&mp[i+]);
} int main(){
//freopen("1038.in","r",stdin);
int i,j,k,l;
for(int t=rd();t;t--){
N=rd(),M=rd(),K=rd();
memset(mp,,sizeof(mp));
sct=;dfs(,,,);
for(i=;i<=K;i++){
int a=rd(),b=rd();
mp[a-]|=b11<<((b-)<<);
}mp[N+]=mp[N]=f11;
bool b=;
for(i=;i<N-;i++){
memset(f[b],-,sizeof(f[b]));
for(j=;j<=sct;j++){
if(judge1(i,sta[j])) continue;
if(!i){f[b][j][]=num[j];continue;}
for(k=;k<=sct;k++){
if((sta[j]&fsta[k])||judge1(i-,sta[k])) continue;
for(l=;l<=sct;l++){
if(fsta[j]&(sta[l]&f01)) continue;
f[b][j][k]=max(f[b][j][k],f[b^][k][l]);
}if(f[b][j][k]==-) continue;
f[b][j][k]+=num[j];
}
}b^=;
}int ans=;
for(i=;i<=sct;i++){
for(j=;j<=sct;j++) ans=max(ans,f[b^][i][j]);
}printf("%d\n",ans);
}
return ;
}

poj1038 Bugs Integrated,Inc. (状压dp)的更多相关文章

  1. POJ1038 Bugs Integrated, Inc 状压DP+优化

    (1) 最简单的4^10*N的枚举(理论上20%) (2) 优化优化200^3*N的枚举(理论上至少50%) (3) Dfs优化状压dp O(我不知道,反正过不了,需要再优化)(理论上80%) (4) ...

  2. POJ 1038 Bugs Integrated, Inc. ——状压DP

    状态压缩一下当前各格子以及上面总共放了几块,只有012三种情况,直接三进制保存即可. 然后转移的时候用搜索找出所有的状态进行转移. #include <map> #include < ...

  3. POJ1038 - Bugs Integrated, Inc.(状态压缩DP)

    题目大意 要求你在N*M大小的主板上嵌入2*3大小的芯片,不能够在损坏的格子放置,问最多能够嵌入多少块芯片? 题解 妈蛋,这道题折腾了好久,黑书上的讲解看了好几遍才稍微有点眉目(智商捉急),接着看了网 ...

  4. poj2411 Mondriaan's Dream[简单状压dp]

    $11*11$格子板上铺$1*2$地砖方案.以前做过?权当复习算了,毕竟以前学都是浅尝辄止的..常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续 ...

  5. POJ 1038 Bugs Integrated Inc (复杂的状压DP)

    $ POJ~1038~~\times Bugs~Integrated~Inc: $ (复杂的状压DP) $ solution: $ 很纠结的一道题目,写了大半天,就想练练手,结果这手生的.其实根据之前 ...

  6. [POJ1038]状压DP

    题意:给一个n*m的区域,里面有一些障碍物,往里面放2*3和3*2的矩形,矩形之间不能重叠,不能覆盖到障碍物,求能放置的最大个数.(n<=150,m<=10) 思路:看到m=10就应该往状 ...

  7. POJ1038 Bugs Integrated, Inc.

    题目来源:http://poj.org/problem?id=1038 题目大意: 有一家芯片公司要在一块N*M的板子上嵌入芯片,其中1<=N<=150, 1<=M<=10,但 ...

  8. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  9. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

随机推荐

  1. java缓存技术的介绍

    一.什么是缓存1.Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问2.凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之 ...

  2. ETL流程介绍及常用实现方法

    ETL是英文Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.常见于数据仓库开发中将数 ...

  3. System.Data.SqlClient.SqlException:“对象名 'customer' 无效。"

    连接数据库出错, 错误原因:表名错误.

  4. QT 遇到的问题

    遇到的问题: 1:在QT中使用opengl,发现一个很神奇的问题,个人感觉是qt的bug. 问题详情:在我添加了一个成员变量之后,使用opengl编写的窗口没有任何输出了,只有一个背景. 但是删除那个 ...

  5. QQ群管理员申请帖(本次截止日期为2017-03-25)

    本帖专门为技术交流群申请管理员专用. 管理员的权利: 1.有权在成员违规的情况下直接剔除. 2.有权加入多个交流群. 3.有权引人入群. 4.艾特全体是权利,但要慎用,通常情况下,没有我本人的授意,不 ...

  6. monkey测试基础

    一.环境配置 Java JDK和android SDK 二.基本命令 *安卓手机链接电脑,打开手机的开发者模式,允许usb调试 adb:检查adb是否安装成功 adb devices:查看连接的设备 ...

  7. Nginx+Tomcat+Memcached部署

    环境清单列表:(因为只有三台电脑,所有把Nginx和memcached放到一起) 应用服务器1:192.168.51.10: 应用服务器2:192.168.55.110: memcached服务器:1 ...

  8. dxteam团队项目终审报告

    一. 团队成员的简介和个人博客地址 M1阶段 http://www.cnblogs.com/dxteam/p/3991514.html M2阶段 新成员 邓亚梅 http://www.cnblogs. ...

  9. 11.13 Daily Scrum

    今天在实现餐厅列表时,原来使用的百度地图poi搜索接口无法返回餐厅的具体信息. 经过一番周折,找到了一个返回餐厅url的接口.我们调整了一下实现,在点击餐厅列表的某一项点击直接跳到和该餐厅信息有关的网 ...

  10. 作业七:Linux内核如何装载和启动一个可执行程序

    作业七:Linux内核如何装载和启动一个可执行程序 一.编译链接的过程和ELF可执行文件格式 可执行文件的创建——预处理.编译和链接 在object文件中有三种主要的类型. 一个可重定位(reloca ...