Segments
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0)); int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double Cross(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(Cross(l2.s,l1.s,l1.e))*sgn(Cross(l2.e,l1.s,l1.e)) <= ;
}
Point a[N],b[N];
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
int check1(Line x,int n)
{
if(sgn(dist(x.s,x.e))==)return ;
for(int k=;k<=n;k++)
{
Line now=Line(a[k],b[k]);
if(!Seg_inter_line(x,now))return ;
}
return ;
}
int check(int n)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
Line l1=Line(a[i],a[j]),l2=Line(a[i],b[j]),l3=Line(b[i],a[j]),l4=Line(b[i],b[j]);
if(check1(l1,n)||check1(l2,n)||check1(l3,n)||check1(l4,n))return ;
}
}
return ;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
double x1,y1,x2,y2;
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
a[i]=Point(x1,y1),b[i]=Point(x2,y2);
}
if(check(n))printf("Yes!\n");
else printf("No!\n");
}
return ;
}

poj 3304 Segments 线段与直线相交的更多相关文章

  1. POJ 3304 segments 线段和直线相交

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14178   Accepted: 4521 Descrip ...

  2. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  3. POJ 3304 /// 判断线段与直线是否相交

    题目大意: 询问给定n条线段 是否存在一条直线使得所有线段在直线上的投影存在公共点 这个问题可以转化为 是否存在一条直线与所有的线段同时相交 而枚举直线的问题 因为若存在符合要求的直线 那么必存在穿过 ...

  4. poj 3304 Segments(计算直线与线段之间的关系)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10921   Accepted: 3422 Descrip ...

  5. POJ 3304 Segments | 线段相交

    #include<cstdio> #include<algorithm> #include<cstring> #define N 105 #define eps 1 ...

  6. POJ 3304 Segments(线的相交判断)

    Description Given n segments in the two dimensional space, write a program, which determines if ther ...

  7. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  8. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  9. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

随机推荐

  1. javascript的数组之find()

    find()方法返回数组中第一个满足回调函数测试的第一个元素的值.否则返回undefined const arr1 = [1, 2, 3, 4, 6, 9]; let found = arr1.fin ...

  2. sqoop/1.4.6/下载

    http://archive.apache.org/dist/sqoop/1.4.6/

  3. springboot+mybatis+druid数据库连接池

    参考博客https://blog.csdn.net/liuxiao723846/article/details/80456025 1.先在pom.xml中引入druid依赖包 <!-- 连接池 ...

  4. python基础,if语句,while循环

    if语句: ①2选一                                              ④多选一 if:     条件                              ...

  5. vue-cli脚手架

    cnpm i vue-cli -g   //npm 安装报错,原因不明,可能是我改过东西的原因,但是cnpm可以安装 命令行进入要新建的vue的目录执行 C:\Users\76912\Videos\v ...

  6. [js]this关键字代表当前执行的主体

    点前是谁,this就是谁 <div id="div1" class="div1"></div> <div id="div ...

  7. 【UML】NO.71.EBook.9.UML.4.002-【PowerDesigner 16 从入门到精通】- RQM

    1.0.0 Summary Tittle:[UML]NO.71.EBook.9.UML.4.002-[PowerDesigner 16 从入门到精通]-  RQM Style:DesignPatter ...

  8. 常用Git命令清单。

    上期传送门:[清单]7个管理和优化网站资源的工具 下面是我整理的常用 Git 命令清单.几个专用名词的译名如下. Workspace:工作区 Index / Stage:暂存区 Repository: ...

  9. 7个管理和优化网站资源的 Python 工具

    前一篇:

  10. cocos2d JS-(JavaScript) 冒泡排序

    思想: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的元素重复以上的步骤,除了最 ...