import os
import time
import datetime
import mmcv
import cv2 as cv
import json
import numpy as np
import pycocotools.mask as maskutil
import pycocotools.coco as COCO
from itertools import groupby
from skimage import measure,draw,data
from PIL import Image def close_contour(contour):
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack((contour, contour[0]))
return contour def binary_mask_to_polygon(binary_mask, tolerance=0):
"""Converts a binary mask to COCO polygon representation
Args:
binary_mask: a 2D binary numpy array where '1's represent the object
tolerance: Maximum distance from original points of polygon to approximated
polygonal chain. If tolerance is 0, the original coordinate array is returned.
"""
polygons = []
# pad mask to close contours of shapes which start and end at an edge
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
contours = measure.find_contours(padded_binary_mask, 0.5)
contours = np.subtract(contours, 1)
for contour in contours:
contour = close_contour(contour)
contour = measure.approximate_polygon(contour, tolerance)
if len(contour) < 3:
continue
contour = np.flip(contour, axis=1)
segmentation = contour.ravel().tolist()
# after padding and subtracting 1 we may get -0.5 points in our segmentation
segmentation = [0 if i < 0 else i for i in segmentation]
polygons.append(segmentation) return polygons def binary_mask_to_rle(binary_mask):
rle = {'counts': [], 'size': list(binary_mask.shape)}
counts = rle.get('counts')
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return rle def main2():
seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
compactedRLE = maskutil.frPyObjects([seg], 768, 768)
print(compactedRLE)
#compactedRLE=[
# {"size":[768, 768],
# "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
# }]
mask = maskutil.decode(compactedRLE)
mask=np.reshape(mask,(768,768))
mask[:,:]=mask[:,:]*255
print(mask)
#mmcv.imshow(mask) '''
mask=np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]
]
)
print(mask)
''' poly=binary_mask_to_polygon(mask)
print(poly)
rle=binary_mask_to_rle(mask)
print(rle)
#mmcv.imshow(area) return 0 def class2color(classes=1,class_id=0):
sum = classes*12357
return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)] def mainContour():
imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
img = cv.imread(imgfile)
h, w, _ = img.shape gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # Find Contour
_, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
print(contours) def main():
testimagepath = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
imageprefix = "/media/wit/WeiJX/AirbusShip/test-images/" startTime = time.time()
trthset = json.load(open(testimagepath, 'r'))
assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
print('Done (t={:0.2f}s)'.format(time.time() - startTime)) ann_Y0 = trthset['annotations']
ann_Y1 = prdcset['annotations'] for image in trthset['images']:
imagepath = imageprefix+image['file_name']
img = cv.imread(imagepath) src = np.zeros((768,768,3), np.uint8)
src[:,:,:]=img[:,:,:]
dst = np.zeros((768,768,3), np.uint8)
dst[:,:,:]=img[:,:,:] masks = np.zeros((768, 768, 1), np.uint8)
masks.fill(0)
id0 = image['id'] counts = 0 contours = []
for target in ann_Y0:
if target['image_id']==id0:
counts += 1
j=0
X=[]
Y=[]
for seg in target['segmentation'][0]:
if j == 0:
x = float(seg)
X.append(x)
else:
y = float(seg)
Y.append(y)
j = 1-j rr, cc = draw.polygon(Y, X)
draw.set_color(src, [rr, cc], [0, 0, 255], 0.4) Point = np.zeros((len(Y), 2), dtype='int32')
Point [:, 0] = X[:]
Point [:, 1] = Y[:]
#print(Point)
cv.fillPoly(masks, np.array([Point],'int32'), 1)
src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts mmcv.imshow(src,"Y",1) masks.fill(0)
counts = 0
for target in ann_Y1:
if target['image_id']==id0:
counts += 1
CRLE = target['segmentation']
#print(CRLE)
mask = maskutil.decode(CRLE)
mask = np.reshape(mask, (img.shape[1], img.shape[0], 1))
masks[:, :] = masks[:, :] + mask[:, :] dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
mmcv.imshow(dst,"Y'") return 0 if __name__ == '__main__':
main()

绘制COCO数据集结果的更多相关文章

  1. [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug

    1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...

  2. COCO 数据集的使用

    Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...

  3. COCO数据集深入理解

    TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...

  4. COCO 数据集使用说明书

    下面的代码改写自 COCO 官方 API,改写后的代码 cocoz.py 被我放置在 Xinering/cocoapi.我的主要改进有: 增加对 Windows 系统的支持: 替换 defaultdi ...

  5. Pascal VOC & COCO数据集介绍 & 转换

    目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...

  6. 在ubuntu1604上使用aria2下载coco数据集效率非常高

    简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...

  7. MS coco数据集下载

    2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...

  8. coco数据集标注图转为二值图python(附代码)

    coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...

  9. COCO数据集使用

    一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...

随机推荐

  1. Linux下的搜索查找命令的详解(which)

    我们经常在linux要查找某个文件,但不知道放在哪里了,可以使用下面的一些命令来搜索:  which  查看可执行文件的位置. whereis 查看文件的位置.  locate   配合数据库查看文件 ...

  2. 启动Mysql数据库报错误:-bash: ./start.sh: Permission denied

    linux下安装好Mysql数据库后,输入启动命令: cd /home/homework/mysql && ./start.sh 回车后报如下错误: 原因是:该文件未有相关执行权限 解 ...

  3. keras入门

    自己要搞深度学习,正好手上有本keras之父写的深度学习书,于是就从keras入手吧.看了一个电影的二分类问题,确实很简单,可以熟悉深度学习的流程.首先熟悉了结果keras的模块,如model,Seq ...

  4. 配置非安装版tomcat服务

    1.设置服务名称,进入tomcat目录/bin文件夹,编辑service.bat中的 set SERVICE_NAME = (修改成你需要的服务名,这个将是你启动服务的句柄): 2.修改 set PR ...

  5. react+mobx 编写 Async装饰器

    使用 // indexStore.js import axios from "axios"; import { from } from "rxjs"; impo ...

  6. linux基础操作1

    date #查看日期cal #查看当月日历cal 2017 #查看某年全年的日历whoami #查看当前登录的用户 #修改网卡,可以上网的步骤vi /etc/sysconfig/network-scr ...

  7. history.back();谷歌浏览器,iframe后退问题

    history.back();谷歌浏览器,iframe后退直接会后退父页面. 使用以下方式即可//document.referrer是获取上一页的urllocation.href=document.r ...

  8. 利用XML语法 SQL 列转行

    --行转列 固定xml语法 declare @xml xml ; set @xml=cast('<v>2</v><v>4</v><v>3&l ...

  9. 计算机组成原理——主存与cache的映射关系

    全相联映像: 特点:指主存的一个字块能够映像到整个Cache的不论什么一个字块中.这样的映射方法比較灵活,cache的利用率高.但地址转换速度慢,且须要採用某种置换算法将cache中的内容调入调出,实 ...

  10. 对象何时进入老年代、何时发生full gc

    一.对象何时进入老年代 (1)当对象首次创建时, 会放在新生代的eden区, 若没有GC的介入,会一直在eden区, GC后,是可能进入survivor区或者年老代 (2)当对象年龄达到一定的大小 , ...