绘制COCO数据集结果
import os
import time
import datetime
import mmcv
import cv2 as cv
import json
import numpy as np
import pycocotools.mask as maskutil
import pycocotools.coco as COCO
from itertools import groupby
from skimage import measure,draw,data
from PIL import Image def close_contour(contour):
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack((contour, contour[0]))
return contour def binary_mask_to_polygon(binary_mask, tolerance=0):
"""Converts a binary mask to COCO polygon representation
Args:
binary_mask: a 2D binary numpy array where '1's represent the object
tolerance: Maximum distance from original points of polygon to approximated
polygonal chain. If tolerance is 0, the original coordinate array is returned.
"""
polygons = []
# pad mask to close contours of shapes which start and end at an edge
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
contours = measure.find_contours(padded_binary_mask, 0.5)
contours = np.subtract(contours, 1)
for contour in contours:
contour = close_contour(contour)
contour = measure.approximate_polygon(contour, tolerance)
if len(contour) < 3:
continue
contour = np.flip(contour, axis=1)
segmentation = contour.ravel().tolist()
# after padding and subtracting 1 we may get -0.5 points in our segmentation
segmentation = [0 if i < 0 else i for i in segmentation]
polygons.append(segmentation) return polygons def binary_mask_to_rle(binary_mask):
rle = {'counts': [], 'size': list(binary_mask.shape)}
counts = rle.get('counts')
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return rle def main2():
seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
compactedRLE = maskutil.frPyObjects([seg], 768, 768)
print(compactedRLE)
#compactedRLE=[
# {"size":[768, 768],
# "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
# }]
mask = maskutil.decode(compactedRLE)
mask=np.reshape(mask,(768,768))
mask[:,:]=mask[:,:]*255
print(mask)
#mmcv.imshow(mask) '''
mask=np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]
]
)
print(mask)
''' poly=binary_mask_to_polygon(mask)
print(poly)
rle=binary_mask_to_rle(mask)
print(rle)
#mmcv.imshow(area) return 0 def class2color(classes=1,class_id=0):
sum = classes*12357
return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)] def mainContour():
imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
img = cv.imread(imgfile)
h, w, _ = img.shape gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # Find Contour
_, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
print(contours) def main():
testimagepath = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
imageprefix = "/media/wit/WeiJX/AirbusShip/test-images/" startTime = time.time()
trthset = json.load(open(testimagepath, 'r'))
assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
print('Done (t={:0.2f}s)'.format(time.time() - startTime)) ann_Y0 = trthset['annotations']
ann_Y1 = prdcset['annotations'] for image in trthset['images']:
imagepath = imageprefix+image['file_name']
img = cv.imread(imagepath) src = np.zeros((768,768,3), np.uint8)
src[:,:,:]=img[:,:,:]
dst = np.zeros((768,768,3), np.uint8)
dst[:,:,:]=img[:,:,:] masks = np.zeros((768, 768, 1), np.uint8)
masks.fill(0)
id0 = image['id'] counts = 0 contours = []
for target in ann_Y0:
if target['image_id']==id0:
counts += 1
j=0
X=[]
Y=[]
for seg in target['segmentation'][0]:
if j == 0:
x = float(seg)
X.append(x)
else:
y = float(seg)
Y.append(y)
j = 1-j rr, cc = draw.polygon(Y, X)
draw.set_color(src, [rr, cc], [0, 0, 255], 0.4) Point = np.zeros((len(Y), 2), dtype='int32')
Point [:, 0] = X[:]
Point [:, 1] = Y[:]
#print(Point)
cv.fillPoly(masks, np.array([Point],'int32'), 1)
src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts mmcv.imshow(src,"Y",1) masks.fill(0)
counts = 0
for target in ann_Y1:
if target['image_id']==id0:
counts += 1
CRLE = target['segmentation']
#print(CRLE)
mask = maskutil.decode(CRLE)
mask = np.reshape(mask, (img.shape[1], img.shape[0], 1))
masks[:, :] = masks[:, :] + mask[:, :] dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
mmcv.imshow(dst,"Y'") return 0 if __name__ == '__main__':
main()
绘制COCO数据集结果的更多相关文章
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
- COCO 数据集的使用
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...
- COCO数据集深入理解
TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...
- COCO 数据集使用说明书
下面的代码改写自 COCO 官方 API,改写后的代码 cocoz.py 被我放置在 Xinering/cocoapi.我的主要改进有: 增加对 Windows 系统的支持: 替换 defaultdi ...
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- 在ubuntu1604上使用aria2下载coco数据集效率非常高
简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...
- MS coco数据集下载
2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...
- coco数据集标注图转为二值图python(附代码)
coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...
- COCO数据集使用
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...
随机推荐
- iOS WKWebView (NSURLProtocol)拦截js、css,图片资源
项目地址github:<a href="https://github.com/LiuShuoyu/HybirdWKWebVIew/">HybirdWKWebVIew&l ...
- Retrofit2 项目配置
在项目的 app build.gradle 文件中加入 dependencies { // Retrofit2implementation 'com.squareup.retrofit2:retro ...
- git 的相关知识
参考文章 git checkout HEAD <file> : master/HEAD -> index -> work directory index 暂存区有两行信息.分 ...
- ArcGIS AddIN Sample学习笔记
1.AddInEditorExtension 功能描述:编辑器扩展,实现在编辑要素,对编辑事件的监听,及对新创建的要素的处理 核心代码: void Events_OnStartEditing() { ...
- 补充:ajax PHP html js 实现 三级联动(省 市 区)
html + js 在一个页面 php
- IDEA 快捷将创建main函数
在编写代码的时候直接输入psv就会看到一个psvm的提示,此时点击tab键一个main方法就写好了. psvm 也就是public static void main的首字母. 依次还有在方法体内键入f ...
- MAVEN day04 SSH之分模块开发
一.创建父工程 1.选择>>"Maven Project"创建Maven工程.并且选择Packaging为 POM. 创建父工程主要是让子工程区继承父工程,减少冗余,多 ...
- 接口测试工具-Jmeter使用笔记(九:跨线程组传递变量)
使用场景: 请求API需要授权令牌,但是授权令牌只需要获取一次,即可调用服务器上其他业务接口. 所以我想要把授权操作放在单独的一个线程,业务流放在其他线程. 这就需要我把从授权线程获取的令牌传入业务流 ...
- 扩容Linux文件系统
扩容Linux文件系统 腾讯云 云硬盘扩容 https://cloud.tencent.com/product/cbs https://cloud.tencent.com/document/produ ...
- python中 ImportError: No module XXX的解决办法
python是通过过使用:sys.path来获取模块的路径的,返回的但是一个list 向python模块路径中加入自己的模块:sys.path.append(os.path.abspath('%s.. ...